知識(shí)庫的發(fā)展經(jīng)歷了四個(gè)階段,知識(shí)庫1.0階段,該階段是知識(shí)的保存和簡單搜索;知識(shí)庫2.0階段,該階段開始注重知識(shí)的分類整理;知識(shí)庫3.0階段,該階段已經(jīng)形成了完善的知識(shí)存儲(chǔ)、搜索、分享、權(quán)限控制等功能?,F(xiàn)在是知識(shí)庫4.0階段,即大模型跟知識(shí)庫結(jié)合的階段。
目前大模型知識(shí)庫系統(tǒng)已經(jīng)實(shí)現(xiàn)了兩大突破。是企業(yè)本地知識(shí)庫與大模型API結(jié)合,實(shí)現(xiàn)大模型對(duì)私域知識(shí)庫的再利用,比如基于企業(yè)知識(shí)庫的自然語言、基于企業(yè)資料的方案生成等;第二是基于可商用開源大模型進(jìn)行本地化部署及微調(diào),使其完成成為企業(yè)私有化的本地大模型,可對(duì)企業(yè)各業(yè)務(wù)實(shí)現(xiàn)助力。 很多企業(yè)在探索大模型與小模型級(jí)聯(lián),小模型連接應(yīng)用,大模型增強(qiáng)小模型能力,這是我們比較看好的未來方向。山東中小企業(yè)大模型的概念是什么
大模型訓(xùn)練過程復(fù)雜且成本高主要是由以下幾個(gè)因素導(dǎo)致的:
1、參數(shù)量大的模型通常擁有龐大的數(shù)據(jù)量,例如億級(jí)別的參數(shù)。這樣的龐大參數(shù)量需要更多的內(nèi)存和計(jì)算資源來存儲(chǔ)和處理,增加了訓(xùn)練過程的復(fù)雜性和成本。
2、需要大規(guī)模訓(xùn)練數(shù)據(jù):為了訓(xùn)練大模型,需要收集和準(zhǔn)備大規(guī)模的訓(xùn)練數(shù)據(jù)集。這些數(shù)據(jù)集包含了豐富的語言信息和知識(shí),需要耗費(fèi)大量時(shí)間和人力成本來收集、清理和標(biāo)注。同時(shí),為了獲得高質(zhì)量的訓(xùn)練結(jié)果,數(shù)據(jù)集的規(guī)模通常需要保持在很大的程度上,使得訓(xùn)練過程變得更為復(fù)雜和昂貴。
3、需要大量的計(jì)算資源:訓(xùn)練大模型需要大量的計(jì)算資源,包括高性能的CPU、GPU或者TPU集群。這是因?yàn)榇竽P托枰M(jìn)行大規(guī)模的矩陣運(yùn)算、梯度計(jì)算等復(fù)雜的計(jì)算操作,需要更多的并行計(jì)算能力和存儲(chǔ)資源。購買和配置這樣的計(jì)算資源需要巨額的投入,因此訓(xùn)練成本較高。
4、訓(xùn)練時(shí)間較長:由于大模型參數(shù)量巨大和計(jì)算復(fù)雜度高,訓(xùn)練過程通常需要較長的時(shí)間。訓(xùn)練時(shí)間的長短取決于數(shù)據(jù)集的大小、計(jì)算資源的配置和算法的優(yōu)化等因素。長時(shí)間的訓(xùn)練過程不僅增加了計(jì)算資源的利用成本,也會(huì)導(dǎo)致周期性的停機(jī)和網(wǎng)絡(luò)傳輸問題,進(jìn)一步加大了訓(xùn)練時(shí)間和成本。 浙江知識(shí)庫系統(tǒng)大模型發(fā)展前景是什么通用大模型應(yīng)用在各行各業(yè)中缺乏專業(yè)度,這就是為什么“每個(gè)行業(yè)都應(yīng)該有屬于自己的大模型”。
目前國內(nèi)大型模型出現(xiàn)百家爭鳴的景象,各自的產(chǎn)品都各有千秋,還沒有誰能做到一家獨(dú)大。國內(nèi)Top-5的大模型公司,分別是:百度的文心一言、阿里的通義千問、騰訊的混元、華為的盤古以及科大訊飛的星火。
1、百度的文心一言:它是在產(chǎn)業(yè)實(shí)際應(yīng)用中真正產(chǎn)生價(jià)值的一個(gè)模型,它不僅從無監(jiān)督的語料中學(xué)習(xí)知識(shí),還通過百度多年積累的海量知識(shí)中學(xué)習(xí)。這些知識(shí),是高質(zhì)量的訓(xùn)練語料,有一些是人工精標(biāo)的,有一些是自動(dòng)生成的。文心大模型參數(shù)量非常大,達(dá)到了2600億。
2、阿里的通義千問:它是一個(gè)超大規(guī)模的語言模型,具備多輪對(duì)話、文案創(chuàng)作、邏輯推理、多模態(tài)理解、多語言支持等功能。參數(shù)已從萬億升級(jí)至10萬億,成為全球比較大的AI預(yù)訓(xùn)練模型。
3、騰訊的混元:它是一個(gè)包含CV(計(jì)算機(jī)視覺)、NLP(自然語言處理)、多模態(tài)內(nèi)容理解、文案生成、文生視頻等方向的超大規(guī)模AI智能模型。騰訊在大語言模型AI的布局,尤其是類ChatGPT聊天機(jī)器人,有著別人無法比擬的優(yōu)勢,還可以通過騰訊云向B端用戶服務(wù)。
4、華為的盤古:作為國際市場上抗打的企業(yè),在AI領(lǐng)域自然也被給予了厚望。盤古大模型向行業(yè)提供服務(wù),以行業(yè)需求為基礎(chǔ)設(shè)計(jì)的大模型體系,目前在在礦山領(lǐng)域?qū)崿F(xiàn)商用。
AI大模型正在世界各地如火如荼地發(fā)展著,ChatGPT的出現(xiàn)降低各行各業(yè)使用人工智能的門檻,每一個(gè)領(lǐng)域都有自己的知識(shí)體系,靠大模型難以滿足垂直領(lǐng)域的需求,杭州音視貝科技公司致力于大模型在智能客服領(lǐng)域的應(yīng)用,提升客戶滿意度,具體解決方案如下:
1、即時(shí)響應(yīng):對(duì)于客戶的提問和問題,智能客服應(yīng)該能夠快速、準(zhǔn)確地提供解答或者轉(zhuǎn)接至適當(dāng)?shù)娜藛T處理,避免讓客戶等待過久。
2、個(gè)性化服務(wù):智能客服可以利用機(jī)器學(xué)習(xí)和自然語言處理技術(shù),了解客戶的偏好和需求,并根據(jù)這些信息提供定制化的解決方案。
3、持續(xù)學(xué)習(xí):通過分析客戶反饋和交互數(shù)據(jù),了解客戶的需求,并進(jìn)行相應(yīng)的調(diào)整和改進(jìn)。
4、自助服務(wù):提供自助服務(wù)功能,例如FAQ搜索、自助操作指南等,幫助客戶快速解決常見問題,減少客戶等待時(shí)間。
5、情感分析:除了基本的自動(dòng)回復(fù)功能,智能客服還可以利用人工智能技術(shù),例如語音識(shí)別和情感分析,實(shí)現(xiàn)更加自然和智能的對(duì)話,提高客戶體驗(yàn)。
6、關(guān)注反饋:積極收集客戶的反饋和建議,對(duì)于客戶的不滿意的問題,及時(shí)進(jìn)行解決和改進(jìn),以提升客戶滿意度。 隨著技術(shù)的不斷進(jìn)步和創(chuàng)新,我們可以期待大模型在各個(gè)領(lǐng)域繼續(xù)取得更多突破和應(yīng)用。
AI大模型賦能智能服務(wù)場景主要有以下幾種:
1、智能熱線??筛鶕?jù)與居民/企業(yè)的交流內(nèi)容,快速判定并精細(xì)適配政策。根據(jù)**的不同需求,通過智能化解決方案,提供全天候的智能服務(wù)。
2、數(shù)字員工。將數(shù)字人對(duì)話場景無縫嵌入到服務(wù)業(yè)務(wù)流程中,為**提供“邊聊邊辦”的數(shù)字化服務(wù)。辦事**與數(shù)字人對(duì)話時(shí),數(shù)字人可提供智能推送服務(wù)入口,完成業(yè)務(wù)咨詢、資訊推送、服務(wù)引導(dǎo)、事項(xiàng)辦理等服務(wù)。
3、智能營商環(huán)境分析。利用多模態(tài)大模技術(shù),為用戶提供精細(xì)的全生命周期辦事推薦、數(shù)據(jù)分析、信息展示等服務(wù),將“被動(dòng)服務(wù)”模式轉(zhuǎn)變?yōu)椤爸鲃?dòng)服務(wù)”模式。
4、智能審批。大模型+RPA的辦公助手,與審批系統(tǒng)集成,自動(dòng)處理一些標(biāo)準(zhǔn)化審批請(qǐng)求,審批進(jìn)程提醒,并自動(dòng)提取審批過程中的關(guān)鍵指標(biāo)和統(tǒng)計(jì)數(shù)據(jù),生成報(bào)告和可視化圖表,提高審批效率和質(zhì)量。 “人工智能+醫(yī)療”是大勢所趨,AI大語言模型在醫(yī)療系統(tǒng)的應(yīng)用把醫(yī)療診斷與患者服務(wù)帶到了一個(gè)新的天地。上海通用大模型使用技術(shù)是什么
大模型通過大規(guī)模訓(xùn)練數(shù)據(jù)、多領(lǐng)域訓(xùn)練、知識(shí)融合和遷移學(xué)習(xí)等手段,擁有更全的知識(shí)儲(chǔ)備。山東中小企業(yè)大模型的概念是什么
企業(yè)組織在數(shù)字化進(jìn)程中產(chǎn)生了大量的文檔,在收集、共享、搜索時(shí)會(huì)碰到很多問題,比如:
1、文件形式涉及多種格式,有文檔、圖片、音頻、視頻等,很難進(jìn)行查找;
2、文件名稱、編號(hào)、版本、權(quán)限等缺乏統(tǒng)一的管理標(biāo)準(zhǔn);
3、文件沒有統(tǒng)一歸檔,數(shù)據(jù)無法共享,導(dǎo)致重復(fù)性勞動(dòng);
杭州音視貝科技公司將大模型應(yīng)用到企業(yè)知識(shí)庫管理系統(tǒng)中,幫助企業(yè)解決文件在收集和搜索中碰上的各種問題,其具體解決方案如下:
1、知識(shí)積累。建立統(tǒng)一的知識(shí)庫,自動(dòng)采集不同來源的文檔;
2、知識(shí)標(biāo)注。建立文件標(biāo)準(zhǔn)規(guī)范,對(duì)不同類型的文件進(jìn)行區(qū)別管理;
3、知識(shí)調(diào)取。支持文檔、圖片、音頻、視頻等多種格式,簡單輸入指令即可完成;
4、知識(shí)擴(kuò)充。除了支持本地知識(shí)庫搜索外,還支持網(wǎng)絡(luò)知識(shí)庫搜索。 山東中小企業(yè)大模型的概念是什么
杭州音視貝科技有限公司成立于2020-03-05年,在此之前我們已在智能外呼系統(tǒng),智能客服系統(tǒng),智能質(zhì)檢系統(tǒng),呼叫中心行業(yè)中有了多年的生產(chǎn)和服務(wù)經(jīng)驗(yàn),深受經(jīng)銷商和客戶的好評(píng)。我們從一個(gè)名不見經(jīng)傳的小公司,慢慢的適應(yīng)了市場的需求,得到了越來越多的客戶認(rèn)可。公司主要經(jīng)營智能外呼系統(tǒng),智能客服系統(tǒng),智能質(zhì)檢系統(tǒng),呼叫中心,公司與智能外呼系統(tǒng),智能客服系統(tǒng),智能質(zhì)檢系統(tǒng),呼叫中心行業(yè)內(nèi)多家研究中心、機(jī)構(gòu)保持合作關(guān)系,共同交流、探討技術(shù)更新。通過科學(xué)管理、產(chǎn)品研發(fā)來提高公司競爭力。公司會(huì)針對(duì)不同客戶的要求,不斷研發(fā)和開發(fā)適合市場需求、客戶需求的產(chǎn)品。公司產(chǎn)品應(yīng)用領(lǐng)域廣,實(shí)用性強(qiáng),得到智能外呼系統(tǒng),智能客服系統(tǒng),智能質(zhì)檢系統(tǒng),呼叫中心客戶支持和信賴。音視貝秉承著誠信服務(wù)、產(chǎn)品求新的經(jīng)營原則,對(duì)于員工素質(zhì)有嚴(yán)格的把控和要求,為智能外呼系統(tǒng),智能客服系統(tǒng),智能質(zhì)檢系統(tǒng),呼叫中心行業(yè)用戶提供完善的售前和售后服務(wù)。