通過提高通過標(biāo)準(zhǔn)工具識(shí)別風(fēng)險(xiǎn)的可預(yù)測(cè)性,或者通過提供其他方式無法獲得的更合適的模型,器官芯片有望填補(bǔ)許多空白。揭示原本不會(huì)被發(fā)現(xiàn)的毒性或揭示藥物不良事件之前的細(xì)胞功能變化的能力為具有重要價(jià)值。但是,為了更好地發(fā)揮器官芯片的潛力,應(yīng)該將這些先進(jìn)的體外模型收集到的見解與體內(nèi)數(shù)據(jù)進(jìn)行比較。除了用于藥物開發(fā),器官芯片還可在多個(gè)領(lǐng)域發(fā)揮無可比擬的作用,包括環(huán)境毒理學(xué)評(píng)估,疾病模型研究,化妝品有效和安全性評(píng)估等。英國(guó)CNBio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。更多關(guān)于CN-BIO器官芯片相關(guān)問題,歡迎咨詢上海曼博生物!哪個(gè)品牌的器官芯片比較好呢?腸類器官芯片生產(chǎn)商盡管安全評(píng)...
器官芯片模型的可用性為理解人類疾病的發(fā)病機(jī)制提供了大量機(jī)會(huì),并為篩選藥物提供了潛在的更好模型,因?yàn)檫@些模型利用了類似于人體的動(dòng)態(tài)3D環(huán)境。盡管芯片上器guan模型存在局限性,但新技術(shù)的出現(xiàn)提高了其轉(zhuǎn)化研究和精確醫(yī)學(xué)的能力。全球器官芯片市場(chǎng)按型號(hào)和用戶進(jìn)行細(xì)分。模型類型包括肝芯片模型,肺芯片模型、心臟芯片模型、腎芯片模型,定制和多器官芯片模型等,用戶包括制藥公司,研究機(jī)構(gòu)等。器官芯片有潛力為生理相關(guān)的體外藥物測(cè)試提供更好的試驗(yàn)預(yù)測(cè),能避免由于2D細(xì)胞培養(yǎng)和動(dòng)物實(shí)驗(yàn)等模型缺乏預(yù)測(cè)性而導(dǎo)致的失敗。英國(guó)CNBio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。更多關(guān)于器官芯片相關(guān)產(chǎn)品...
英國(guó)CNBio的器官芯片系統(tǒng),包括PhysioMimix實(shí)驗(yàn)室臺(tái)式儀器,使研究人員能夠通過快速且預(yù)測(cè)性的基于人體組織的研究在實(shí)驗(yàn)室中對(duì)人體生物學(xué)進(jìn)行建模。該技術(shù)彌補(bǔ)了傳統(tǒng)細(xì)胞培養(yǎng)與人類研究之間的空白,并朝著模擬人類生物學(xué)條件前進(jìn),以支持新療法的加速發(fā)展。應(yīng)用范圍包括傳染病,新陳代謝和炎癥。利用器官芯片平臺(tái)PhysioMimix,我們生成了NAFLD的人源體外模型。PHH在含脂肪的培養(yǎng)基中培養(yǎng),該培養(yǎng)基誘導(dǎo)了臨床疾病早期階段的關(guān)鍵特征,包括細(xì)胞內(nèi)脂肪負(fù)載,白蛋白產(chǎn)生增加和關(guān)鍵基因表達(dá)的變化(包括那些與代謝和胰島素抵抗有關(guān)的基因)。 更多關(guān)于器官芯片相關(guān)產(chǎn)品問題,歡迎咨詢上海曼博生物!器官芯片還可...
英國(guó)CNBio的PhysioMimix器官芯片可在一系列培養(yǎng)條件下進(jìn)行先進(jìn)的長(zhǎng)時(shí)間體外肝臟培養(yǎng)以及進(jìn)行不同階段NAFLD/NASH疾病模型的構(gòu)建。此生理相關(guān)的實(shí)驗(yàn)?zāi)P椭荚趲椭铀籴槍?duì)該慢性肝病的新療法研究的進(jìn)程。使用器官芯片,我們已經(jīng)開發(fā)出了一種完整的人類灌注體外NAFLD模型,利用3D培養(yǎng)的原代人肝細(xì)胞(PHH)來模仿肝臟的微體系結(jié)構(gòu)。細(xì)胞使用高濃度的游離脂肪酸培養(yǎng)長(zhǎng)達(dá)四周,以誘導(dǎo)細(xì)胞內(nèi)甘油三酸酯(脂肪)累積并模仿肝脂肪變性。研究了該模型中細(xì)胞的CYP酶活性變化,以及對(duì)已知的肝毒性劑在IC:50濃度附近給藥時(shí)的影響。更多關(guān)于CN-bio的產(chǎn)品信息,歡迎咨詢上海曼博生物醫(yī)藥科技有限公司。***芯...
劍橋,英國(guó),2022年7月19日:設(shè)計(jì)和制造單qiguan和多qiguan微物理系統(tǒng)(MPS)的先進(jìn)器官芯片(OOC)公司CNBiotoday宣布在劍橋科技園開設(shè)新的實(shí)驗(yàn)室設(shè)施,專門用于合同研究服務(wù)(CRO)。隨著OOC技術(shù)在藥物發(fā)現(xiàn)和開發(fā)計(jì)劃中獲得吸引力,該公司的實(shí)驗(yàn)室空間增加了一倍,以應(yīng)對(duì)不斷增長(zhǎng)的OOC服務(wù)市場(chǎng)需求。CNBio的合同研究服務(wù)(CRO)利用了該公司的下一代MPS技術(shù)、十年的專業(yè)知識(shí)和在不斷增長(zhǎng)的應(yīng)用組合中的良好記錄,包括:藥物代謝、安全毒理學(xué)、Zhong Liu學(xué)和非酒精性脂肪性肝炎(NASH)。在幾周內(nèi)為客戶生成可操作的數(shù)據(jù),該團(tuán)隊(duì)與研究人員合作創(chuàng)建了一個(gè)實(shí)驗(yàn)設(shè)計(jì),提供了...
在一項(xiàng)毒理學(xué)研究中證明了在英國(guó)CNBio的Physiomimix單器官芯片MPS中灌注肝細(xì)胞的價(jià)值,該研究捕獲了一個(gè)已經(jīng)明確的肝毒物的作用,并揭示了其類似物(以前被低估)毒性的新穎見解。代謝物以劑量依賴性方式形成,類似于患者用藥過量的情況,白蛋白分泌和谷胱甘肽耗竭測(cè)量分別評(píng)估肝細(xì)胞功能和毒性。而研究人員意識(shí)到,由單一細(xì)胞類型組成的MPS并不能為所有代謝研究提供完整的解決方案。為了提供更緊密地反映體內(nèi)肝臟微體系結(jié)構(gòu)復(fù)雜性的模型,已經(jīng)使用多種細(xì)胞類型創(chuàng)建了共培養(yǎng)模型。想了解更多關(guān)于器官芯片的產(chǎn)品信息,歡迎咨詢上海曼博生物!器官芯片的價(jià)格怎么樣?動(dòng)脈類器官芯片市場(chǎng)現(xiàn)狀英國(guó)CNBio的器官芯片系統(tǒng),包...
器官芯片模型的可用性為理解人類疾病的發(fā)病機(jī)制提供了大量機(jī)會(huì),并為篩選藥物提供了潛在的更好模型,因?yàn)檫@些模型利用了類似于人體的動(dòng)態(tài)3D環(huán)境。盡管芯片上器guan模型存在局限性,但新技術(shù)的出現(xiàn)提高了其轉(zhuǎn)化研究和精確醫(yī)學(xué)的能力。全球器官芯片市場(chǎng)按型號(hào)和用戶進(jìn)行細(xì)分。模型類型包括肝芯片模型、肺芯片模型,心臟芯片模型、腎芯片模型、定制和多器官芯片模型等,用戶包括制藥公司、研究機(jī)構(gòu)等。器官芯片有潛力為生理相關(guān)的體外藥物測(cè)試提供更好的試驗(yàn)預(yù)測(cè),能避免由于2D細(xì)胞培養(yǎng)和動(dòng)物實(shí)驗(yàn)等模型缺乏預(yù)測(cè)性而導(dǎo)致的失敗。英國(guó)CNBio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。更多器官芯片相關(guān)產(chǎn)品問題...
劍橋,英國(guó),2022年7月19日:設(shè)計(jì)和制造單qiguan和多qiguan微物理系統(tǒng)(MPS)的先進(jìn)器官芯片(OOC)公司CNBiotoday宣布在劍橋科技園開設(shè)新的實(shí)驗(yàn)室設(shè)施,專門用于合同研究服務(wù)(CRO)。隨著OOC技術(shù)在藥物發(fā)現(xiàn)和開發(fā)計(jì)劃中獲得吸引力,該公司的實(shí)驗(yàn)室空間增加了一倍,以應(yīng)對(duì)不斷增長(zhǎng)的OOC服務(wù)市場(chǎng)需求。CNBio的合同研究服務(wù)(CRO)利用了該公司的下一代MPS技術(shù)、十年的專業(yè)知識(shí)和在不斷增長(zhǎng)的應(yīng)用組合中的良好記錄,包括:藥物代謝、安全毒理學(xué)、Zhong Liu學(xué)和非酒精性脂肪性肝炎(NASH)。在幾周內(nèi)為客戶生成可操作的數(shù)據(jù),該團(tuán)隊(duì)與研究人員合作創(chuàng)建了一個(gè)實(shí)驗(yàn)設(shè)計(jì),提供了...
OOC器官芯片模型和其他MPS的應(yīng)用程序多種多樣-就像它們的制造和設(shè)計(jì)方法一樣。已為大多數(shù)組織類型開發(fā)了Organoid,器官芯片模型和其他MPS,并提供了前所未有的進(jìn)行毒性測(cè)試,個(gè)性化藥物以及PK/PD和疾病機(jī)制研究的機(jī)會(huì)??紤]到它們?cè)谒幬镩_發(fā)中的重要性,已大力致力于開發(fā)吸收和代謝模型。腸道藥物吸收的測(cè)定通常采用靜態(tài)2D單層培養(yǎng)中的結(jié)腸腺ai細(xì)胞(Caco-2)。盡管它們很受歡迎,但Caco-2分析存在固有的局限性,導(dǎo)致對(duì)細(xì)胞瓶藥物轉(zhuǎn)運(yùn)的嚴(yán)重預(yù)測(cè)不足。創(chuàng)新的器官芯片技術(shù)為克服這一問題提供了機(jī)會(huì),因?yàn)榭梢愿_地復(fù)制體內(nèi)條件。改善腸道MPS上皮屏障的完整性是當(dāng)務(wù)之急,這可以通過測(cè)量跨上皮電阻來...
OOC器官芯片模型和其他MPS的應(yīng)用程序多種多樣-就像它們的制造和設(shè)計(jì)方法一樣。已為大多數(shù)組織類型開發(fā)了Organoid,器官芯片模型和其他MPS,并提供了前所未有的進(jìn)行毒性測(cè)試,個(gè)性化藥物以及PK/PD和疾病機(jī)制研究的機(jī)會(huì)??紤]到它們?cè)谒幬镩_發(fā)中的重要性,已大力致力于開發(fā)吸收和代謝模型。腸道藥物吸收的測(cè)定通常采用靜態(tài)2D單層培養(yǎng)中的結(jié)腸腺ai細(xì)胞(Caco-2)。盡管它們很受歡迎,但Caco-2分析存在固有的局限性,導(dǎo)致對(duì)細(xì)胞瓶藥物轉(zhuǎn)運(yùn)的嚴(yán)重預(yù)測(cè)不足。創(chuàng)新的器官芯片技術(shù)為克服這一問題提供了機(jī)會(huì),因?yàn)榭梢愿_地復(fù)制體內(nèi)條件。改善腸道MPS上皮屏障的完整性是當(dāng)務(wù)之急,這可以通過測(cè)量跨上皮電阻來...
英國(guó)CNBio的器官芯片系統(tǒng),包括PhysioMimix實(shí)驗(yàn)室臺(tái)式儀器,使研究人員能夠通過快速且預(yù)測(cè)性的基于人體組織的研究在實(shí)驗(yàn)室中對(duì)人體生物學(xué)進(jìn)行建模。該技術(shù)彌補(bǔ)了傳統(tǒng)細(xì)胞培養(yǎng)與人類研究之間的空白,并朝著模擬人類生物學(xué)條件前進(jìn),以支持新療法的加速發(fā)展,應(yīng)用范圍包括傳染病,新陳代謝和炎癥。利用器官芯片平臺(tái)PhysioMimix,我們生成了NAFLD的人源體外模型。PHH在含脂肪的培養(yǎng)基中培養(yǎng),該培養(yǎng)基誘導(dǎo)了臨床疾病早期階段的關(guān)鍵特征,包括細(xì)胞內(nèi)脂肪負(fù)載,白蛋白產(chǎn)生增加和關(guān)鍵基因表達(dá)的變化(包括那些與代謝和胰島素抵抗有關(guān)的基因)。更多關(guān)于器官芯片相關(guān)問題,歡迎咨詢上海曼博生物!器官芯片都用于哪些...
器官芯片模型的可用性為理解人類疾病的發(fā)病機(jī)制提供了大量機(jī)會(huì),并為篩選藥物提供了潛在的更好模型,因?yàn)檫@些模型利用了類似于人體的動(dòng)態(tài)3D環(huán)境。盡管芯片上器guan模型存在局限性,但新技術(shù)的出現(xiàn)提高了其轉(zhuǎn)化研究和精確醫(yī)學(xué)的能力。全球器官芯片市場(chǎng)按型號(hào)和用戶進(jìn)行細(xì)分。模型類型包括肝芯片模型,肺芯片模型、心臟芯片模型、腎芯片模型,定制和多器官芯片模型等,用戶包括制藥公司,研究機(jī)構(gòu)等。器官芯片有潛力為生理相關(guān)的體外藥物測(cè)試提供更好的試驗(yàn)預(yù)測(cè),能避免由于2D細(xì)胞培養(yǎng)和動(dòng)物實(shí)驗(yàn)等模型缺乏預(yù)測(cè)性而導(dǎo)致的失敗。英國(guó)CNBio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。更多關(guān)于器官芯片相關(guān)產(chǎn)品...
在一項(xiàng)毒理學(xué)研究中證明了在英國(guó)CN-Bio的Physiomimix單器官芯片MPS中灌注肝細(xì)胞的價(jià)值,該研究捕獲了一個(gè)已經(jīng)明確的肝毒物的作用,并揭示了其類似物(以前被低估)毒性的新穎見解。代謝物以劑量依賴性方式形成,類似于患者用藥過量的情況,白蛋白分泌和谷胱甘肽耗竭測(cè)量分別評(píng)估肝細(xì)胞功能和毒性。而研究人員意識(shí)到,由單一細(xì)胞類型組成的MPS并不能為所有代謝研究提供完整的解決方案。為了提供更緊密地反映體內(nèi)肝臟微體系結(jié)構(gòu)復(fù)雜性的模型,已經(jīng)使用多種細(xì)胞類型創(chuàng)建了共培養(yǎng)模型。目前使用的主要器官芯片主要包括心臟、腎臟和肺方向的。腸道類器官芯片代理商劍橋,英國(guó),2022年7月19日:設(shè)計(jì)和制造單qiguan...
英國(guó)CNBio的PhysioMimix器官芯片可在一系列培養(yǎng)條件下進(jìn)行先進(jìn)的長(zhǎng)時(shí)間體外肝臟培養(yǎng)以及進(jìn)行不同階段NAFLD/NASH疾病模型的構(gòu)建。此生理相關(guān)的實(shí)驗(yàn)?zāi)P椭荚趲椭铀籴槍?duì)該慢性肝病的新療法研究的進(jìn)程。使用器官芯片,我們已經(jīng)開發(fā)出了一種完整的人類灌注體外NAFLD模型,利用3D培養(yǎng)的原代人肝細(xì)胞(PHH)來模仿肝臟的微體系結(jié)構(gòu)。細(xì)胞使用高濃度的游離脂肪酸培養(yǎng)長(zhǎng)達(dá)四周,以誘導(dǎo)細(xì)胞內(nèi)甘油三酸酯(脂肪)累積并模仿肝脂肪變性。研究了該模型中細(xì)胞的CYP酶活性變化,以及對(duì)已知的肝毒性劑在IC:50濃度附近給藥時(shí)的影響。更多關(guān)于CN-bio的產(chǎn)品信息,歡迎咨詢上海曼博生物醫(yī)藥科技有限公司。***芯...
英國(guó)CNBio的PhysioMimix器官芯片可在一系列培養(yǎng)條件下進(jìn)行先進(jìn)的長(zhǎng)時(shí)間體外肝臟培養(yǎng)以及進(jìn)行不同階段NAFLD/NASH疾病模型的構(gòu)建。此生理相關(guān)的實(shí)驗(yàn)?zāi)P椭荚趲椭铀籴槍?duì)該慢性肝病的新療法研究的進(jìn)程。使用器官芯片,我們已經(jīng)開發(fā)出了一種完整的人類灌注體外NAFLD模型,利用3D培養(yǎng)的原代人肝細(xì)胞(PHH)來模仿肝臟的微體系結(jié)構(gòu)。細(xì)胞使用高濃度的游離脂肪酸培養(yǎng)長(zhǎng)達(dá)四周,以誘導(dǎo)細(xì)胞內(nèi)甘油三酸酯(脂肪)累積并模仿肝脂肪變性。研究了該模型中細(xì)胞的CYP酶活性變化,以及對(duì)已知的肝毒性劑在IC:50濃度附近給藥時(shí)的影響。更多關(guān)于CN-bio的產(chǎn)品信息,歡迎咨詢上海曼博生物醫(yī)藥科技有限公司。***芯...
CN-Bio是DARPA(美國(guó)guo fang高級(jí)研究計(jì)劃局)授予麻省理工學(xué)院的10個(gè)器官芯片的“人體芯片”的資助項(xiàng)目的參與者。2018年3月,《自然科學(xué)報(bào)告》(NatureScientificReports)發(fā)布了該計(jì)劃的一個(gè)里程碑,成功連接了10個(gè)組織的工程組織,一次準(zhǔn)確復(fù)制人體組織相互作用長(zhǎng)達(dá)數(shù)周之久,并允許研究人員測(cè)量藥物對(duì)身體不同部位的影響。2018年2月,倫敦帝國(guó)理工學(xué)院(ImperialCollegeLondon)的研究人員在《自然通訊》(NatureCommunications)上發(fā)表了一篇文章,展示了CN-Bio該器官芯片技術(shù)(OOC、MPS技術(shù))如何在芯片肝臟系統(tǒng)中實(shí)現(xiàn)病毒...
英國(guó)CNBio的PhysioMimix器官芯片可在一系列培養(yǎng)條件下進(jìn)行先進(jìn)的長(zhǎng)時(shí)間體外肝臟培養(yǎng)以及進(jìn)行不同階段NAFLD/NASH疾病模型的構(gòu)建。此生理相關(guān)的實(shí)驗(yàn)?zāi)P椭荚趲椭铀籴槍?duì)該慢性肝病的新療法研究的進(jìn)程。使用器官芯片,我們已經(jīng)開發(fā)出了一種完整的人類灌注體外NAFLD模型,利用3D培養(yǎng)的原代人肝細(xì)胞(PHH)來模仿肝臟的微體系結(jié)構(gòu)。細(xì)胞使用高濃度的游離脂肪酸培養(yǎng)長(zhǎng)達(dá)四周,以誘導(dǎo)細(xì)胞內(nèi)甘油三酸酯(脂肪)累積并模仿肝脂肪變性。研究了該模型中細(xì)胞的CYP酶活性變化,以及對(duì)已知的肝毒性劑在IC:50濃度附近給藥時(shí)的影響。更多關(guān)于CN-BIO相關(guān)產(chǎn)品問題,歡迎咨詢上海曼博生物!目前使用的主要***芯...
劍橋,英國(guó),2022年7月19日:設(shè)計(jì)和制造單qiguan和多qiguan微物理系統(tǒng)(MPS)的先進(jìn)器官芯片(OOC)公司CNBiotoday宣布在劍橋科技園開設(shè)新的實(shí)驗(yàn)室設(shè)施,專門用于合同研究服務(wù)(CRO)。隨著OOC技術(shù)在藥物發(fā)現(xiàn)和開發(fā)計(jì)劃中獲得吸引力,該公司的實(shí)驗(yàn)室空間增加了一倍,以應(yīng)對(duì)不斷增長(zhǎng)的OOC服務(wù)市場(chǎng)需求。CNBio的合同研究服務(wù)(CRO)利用了該公司的下一代MPS技術(shù)、十年的專業(yè)知識(shí)和在不斷增長(zhǎng)的應(yīng)用組合中的良好記錄,包括:藥物代謝、安全毒理學(xué)、Zhong Liu學(xué)和非酒精性脂肪性肝炎(NASH)。在幾周內(nèi)為客戶生成可操作的數(shù)據(jù),該團(tuán)隊(duì)與研究人員合作創(chuàng)建了一個(gè)實(shí)驗(yàn)設(shè)計(jì),提供了...
許多器官芯片研究只能通過基于服務(wù)的產(chǎn)品提供,或者需要大型、復(fù)雜的設(shè)備安裝,伴隨著設(shè)備供應(yīng)商提供深入的培訓(xùn)和持續(xù)的**協(xié)助才能實(shí)現(xiàn)。來自英國(guó)CNBio的PhysioMimix器官芯片提供了一種現(xiàn)成的解決方案,使研究人員能夠快速建立分析方法并獲得結(jié)果。具備標(biāo)準(zhǔn)的實(shí)驗(yàn)室技能即可進(jìn)行設(shè)備的安裝,培養(yǎng)模仿人體組織結(jié)構(gòu)和功能的微組織,并進(jìn)行分析和實(shí)驗(yàn)。PhysioMimix器官芯片可實(shí)現(xiàn)連續(xù)生氧并自動(dòng)控制微流體,提供全天候細(xì)胞培養(yǎng)。液體流量可以編程,使可進(jìn)行長(zhǎng)時(shí)辰的實(shí)驗(yàn)設(shè)計(jì),模擬動(dòng)態(tài)生物學(xué)過程以及藥代動(dòng)力學(xué)控制,只需一鍵啟動(dòng)即可實(shí)現(xiàn),將用戶干預(yù)極大減少,科學(xué)家無需加班或輪班。更多關(guān)于器官芯片相關(guān)問題,歡迎...
在一項(xiàng)毒理學(xué)研究中證明了在英國(guó)CN-Bio的Physiomimix單器官芯片MPS中灌注肝細(xì)胞的價(jià)值,該研究捕獲了一個(gè)已經(jīng)明確的肝毒物的作用,并揭示了其類似物(以前被低估)毒性的新穎見解。代謝物以劑量依賴性方式形成,類似于患者用藥過量的情況,白蛋白分泌和谷胱甘肽耗竭測(cè)量分別評(píng)估肝細(xì)胞功能和毒性。而研究人員意識(shí)到,由單一細(xì)胞類型組成的MPS并不能為所有代謝研究提供完整的解決方案。為了提供更緊密地反映體內(nèi)肝臟微體系結(jié)構(gòu)復(fù)雜性的模型,已經(jīng)使用多種細(xì)胞類型創(chuàng)建了共培養(yǎng)模型。器官芯片的應(yīng)用還需注意對(duì)樣品來源和數(shù)據(jù)分析的標(biāo)準(zhǔn)化和規(guī)范化。肺類器官芯片的發(fā)展英國(guó)CNBio的器官芯片系統(tǒng),包括PhysioMim...
盡管安全評(píng)估和ADME分析是器官芯片技術(shù)的主要背景,但這些研究模型還可以通過許多其他方式來提高藥物開發(fā)的效率。確保MPS發(fā)展符合行業(yè)的需求,這些機(jī)會(huì)已經(jīng)得到了深入的考慮。器官芯片技術(shù)創(chuàng)新者的目標(biāo)是提高新藥和現(xiàn)有藥物(藥物再利用)的藥物療效和安全性的可預(yù)測(cè)性。反過來,這可以提高臨床成功率并加速藥物開發(fā),減輕與藥物失敗相關(guān)的成本并減少對(duì)臨床試驗(yàn)參與者的風(fēng)險(xiǎn)。器官芯片有可能極大地使衛(wèi)生部門受益,而確定當(dāng)前臨床前研究中的具體差距對(duì)于實(shí)現(xiàn)這一目標(biāo)至關(guān)重要。英國(guó)CNBio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。更多關(guān)于器官芯片相關(guān)產(chǎn)品問題,歡迎咨詢上海曼博生物! 3D細(xì)胞培養(yǎng)...
許多器官芯片研究只能通過基于服務(wù)的產(chǎn)品提供,或者需要大型、復(fù)雜的設(shè)備安裝,伴隨著設(shè)備供應(yīng)商提供深入的培訓(xùn)和持續(xù)的**協(xié)助才能實(shí)現(xiàn)。來自英國(guó)CNBio的PhysioMimix器官芯片提供了一種現(xiàn)成的解決方案,使研究人員能夠快速建立分析方法并獲得結(jié)果。具備標(biāo)準(zhǔn)的實(shí)驗(yàn)室技能即可進(jìn)行設(shè)備的安裝,培養(yǎng)模仿人體組織結(jié)構(gòu)和功能的微組織,并進(jìn)行分析和實(shí)驗(yàn)。PhysioMimix器官芯片可實(shí)現(xiàn)連續(xù)生氧并自動(dòng)控制微流體,提供全天候細(xì)胞培養(yǎng)。液體流量可以編程,使可進(jìn)行長(zhǎng)時(shí)辰的實(shí)驗(yàn)設(shè)計(jì),模擬動(dòng)態(tài)生物學(xué)過程以及藥代動(dòng)力學(xué)控制,只需一鍵啟動(dòng)即可實(shí)現(xiàn),將用戶干預(yù)極大減少,科學(xué)家無需加班或輪班。 更多關(guān)于CN-BIO相關(guān)產(chǎn)品...
英國(guó)CN-Bio的器官芯片系統(tǒng),包括PhysioMimix實(shí)驗(yàn)室臺(tái)式儀器,使研究人員能夠通過快速且預(yù)測(cè)性的基于人體組織的研究在實(shí)驗(yàn)室中對(duì)人體生物學(xué)進(jìn)行建模。該技術(shù)彌補(bǔ)了傳統(tǒng)細(xì)胞培養(yǎng)與人類研究之間的空白,并朝著模擬人類生物學(xué)條件前進(jìn),以支持新療法的加速發(fā)展,應(yīng)用范圍包括傳染病,新陳代謝和炎癥。利用器官芯片平臺(tái)PhysioMimix,我們生成了NAFLD的人源體外模型。PHH在含脂肪的培養(yǎng)基中培養(yǎng),該培養(yǎng)基誘導(dǎo)了臨床疾病早期階段的關(guān)鍵特征,包括細(xì)胞內(nèi)脂肪負(fù)載,白蛋白產(chǎn)生增加和關(guān)鍵基因表達(dá)的變化(包括那些與代謝和胰島素抵抗有關(guān)的基因)。更多關(guān)于器官芯片相關(guān)產(chǎn)品信息,歡迎咨詢上海曼博生物!內(nèi)比較好的器...
器官芯片模型的可用性為理解人類疾病的發(fā)病機(jī)制提供了大量機(jī)會(huì),并為篩選藥物提供了潛在的更好模型,因?yàn)檫@些模型利用了類似于人體的動(dòng)態(tài)3D環(huán)境。盡管芯片上器guan模型存在局限性,但新技術(shù)的出現(xiàn)提高了其轉(zhuǎn)化研究和精確醫(yī)學(xué)的能力。全球器官芯片市場(chǎng)按型號(hào)和用戶進(jìn)行細(xì)分。模型類型包括肝芯片模型,肺芯片模型、心臟芯片模型、腎芯片模型,定制和多器官芯片模型等,用戶包括制藥公司,研究機(jī)構(gòu)等。器官芯片有潛力為生理相關(guān)的體外藥物測(cè)試提供更好的試驗(yàn)預(yù)測(cè),能避免由于2D細(xì)胞培養(yǎng)和動(dòng)物實(shí)驗(yàn)等模型缺乏預(yù)測(cè)性而導(dǎo)致的失敗。英國(guó)CNBio的Physiomimix器官芯片正是基于實(shí)現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運(yùn)而生。更多關(guān)于器官芯片相關(guān)產(chǎn)品...
OOC器官芯片模型和其他MPS的應(yīng)用程序多種多樣-就像它們的制造和設(shè)計(jì)方法一樣。已為大多數(shù)組織類型開發(fā)了Organoid,器官芯片模型和其他MPS,并提供了前所未有的進(jìn)行毒性測(cè)試,個(gè)性化藥物以及PK/PD和疾病機(jī)制研究的機(jī)會(huì)。考慮到它們?cè)谒幬镩_發(fā)中的重要性,已大力致力于開發(fā)吸收和代謝模型。腸道藥物吸收的測(cè)定通常采用靜態(tài)2D單層培養(yǎng)中的結(jié)腸腺ai細(xì)胞(Caco-2)。盡管它們很受歡迎,但Caco-2分析存在固有的局限性,導(dǎo)致對(duì)細(xì)胞瓶藥物轉(zhuǎn)運(yùn)的嚴(yán)重預(yù)測(cè)不足。創(chuàng)新的器官芯片技術(shù)為克服這一問題提供了機(jī)會(huì),因?yàn)榭梢愿_地復(fù)制體內(nèi)條件。改善腸道MPS上皮屏障的完整性是當(dāng)務(wù)之急,這可以通過測(cè)量跨上皮電阻來...
器官芯片應(yīng)用的機(jī)會(huì)在于疾病建模和表型篩選,以幫助識(shí)別和排序新的和已知的(包括孤兒藥和可用于重新用途的失敗化合物)化合物候選物。正在尋求改進(jìn)的模型來解決動(dòng)物模型不能很好滿足的條件(例如,乙型肝炎),并能夠進(jìn)行宿主遺傳研究,藥物治療反應(yīng)的建模以及鑒定可用于監(jiān)測(cè)藥物治療的生物標(biāo)記物。英國(guó)CNBio正在其基于MIT的器官芯片技術(shù)產(chǎn)品Physiomimix系統(tǒng)上開發(fā)先進(jìn)的體外模型,以支持對(duì)高度流行的疾病的研究,這些疾病已對(duì)公共健康產(chǎn)生了公認(rèn)的影響,例如非酒精性脂肪性肝炎(NASH)。人類NASH的微組織模型可以證明疾病的主要標(biāo)志,提供了在細(xì)胞水平上闡明病理生理機(jī)制的機(jī)會(huì)。更多器官芯片相關(guān)產(chǎn)品信息,歡迎咨...
微物理系統(tǒng)(MPS)又稱OrganonChip(OOC)、器官芯片,旨在表征人體組織的結(jié)構(gòu)和功能特征。與傳統(tǒng)的二維平皿細(xì)胞培養(yǎng)相比,MPS可以利用多種細(xì)胞類型,在三維支架中培養(yǎng),在灌注狀態(tài)下模擬組織中的血流。它們可用于臨床前藥物吸收、分布、代謝和排泄(ADME)研究,以獲得相關(guān)的人體數(shù)據(jù),并有助于告知?jiǎng)┝糠桨负陀行幬餄舛鹊葏?shù)。MPS包含一系列平臺(tái),這些平臺(tái)通過使用微工程技術(shù)(通常與3D微環(huán)境結(jié)合使用)來模仿組織功能的各個(gè)方面。此類系統(tǒng)已報(bào)告為3D球體,類器guan,器官芯片,靜態(tài)微圖案技術(shù)和非物理芯片模型。更多關(guān)于CN-BIO相關(guān)產(chǎn)品問題,歡迎咨詢上海曼博生物!器官芯片的制備還需考慮其對(duì)細(xì)...
英國(guó)CNBio的器官芯片系統(tǒng),包括PhysioMimix實(shí)驗(yàn)室臺(tái)式儀器,使研究人員能夠通過快速且預(yù)測(cè)性的基于人體組織的研究在實(shí)驗(yàn)室中對(duì)人體生物學(xué)進(jìn)行建模。該技術(shù)彌補(bǔ)了傳統(tǒng)細(xì)胞培養(yǎng)與人類研究之間的空白,并朝著模擬人類生物學(xué)條件前進(jìn),以支持新療法的加速發(fā)展。應(yīng)用范圍包括傳染病,新陳代謝和炎癥。利用器官芯片平臺(tái)PhysioMimix,我們生成了NAFLD的人源體外模型。PHH在含脂肪的培養(yǎng)基中培養(yǎng),該培養(yǎng)基誘導(dǎo)了臨床疾病早期階段的關(guān)鍵特征,包括細(xì)胞內(nèi)脂肪負(fù)載,白蛋白產(chǎn)生增加和關(guān)鍵基因表達(dá)的變化(包括那些與代謝和胰島素抵抗有關(guān)的基因)。 更多關(guān)于器官芯片相關(guān)產(chǎn)品問題,歡迎咨詢上海曼博生物!市場(chǎng)上***芯...
OOC器官芯片模型和其他MPS的應(yīng)用程序多種多樣-就像它們的制造和設(shè)計(jì)方法一樣。已為大多數(shù)組織類型開發(fā)了Organoid,器官芯片模型和其他MPS,并提供了前所未有的進(jìn)行毒性測(cè)試,個(gè)性化藥物以及PK/PD和疾病機(jī)制研究的機(jī)會(huì)。考慮到它們?cè)谒幬镩_發(fā)中的重要性,已大力致力于開發(fā)吸收和代謝模型。腸道藥物吸收的測(cè)定通常采用靜態(tài)2D單層培養(yǎng)中的結(jié)腸腺ai細(xì)胞(Caco-2)。盡管它們很受歡迎,但Caco-2分析存在固有的局限性,導(dǎo)致對(duì)細(xì)胞瓶藥物轉(zhuǎn)運(yùn)的嚴(yán)重預(yù)測(cè)不足。創(chuàng)新的器官芯片技術(shù)為克服這一問題提供了機(jī)會(huì),因?yàn)榭梢愿_地復(fù)制體內(nèi)條件。改善腸道MPS上皮屏障的完整性是當(dāng)務(wù)之急,這可以通過測(cè)量跨上皮電阻來...
器官芯片應(yīng)用的機(jī)會(huì)在于疾病建模和表型篩選,以幫助識(shí)別和排序新的和已知的(包括孤兒藥和可用于重新用途的失敗化合物)化合物候選物。正在尋求改進(jìn)的模型來解決動(dòng)物模型不能很好滿足的條件(例如,乙型肝炎),并能夠進(jìn)行宿主遺傳研究,藥物治療反應(yīng)的建模以及鑒定可用于監(jiān)測(cè)藥物治療的生物標(biāo)記物。英國(guó)CNBio正在其基于MIT的器官芯片技術(shù)產(chǎn)品Physiomimix系統(tǒng)上開發(fā)先進(jìn)的體外模型,以支持對(duì)高度流行的疾病的研究,這些疾病已對(duì)公共健康產(chǎn)生了公認(rèn)的影響,例如非酒精性脂肪性肝炎(NASH)。人類NASH的微組織模型可以證明疾病的主要標(biāo)志,提供了在細(xì)胞水平上闡明病理生理機(jī)制的機(jī)會(huì)。更多關(guān)于器官芯片的產(chǎn)品信息,歡迎...