用峰峰值法處理光譜數(shù)據(jù)時,被測光程差的分辨率取決于光譜儀或CCD的分辨率。我們只需要獲取相鄰的兩個干涉峰值處的波長信息,即可確定光程差,不必關心此波長處的光強大小,從而降低了數(shù)據(jù)處理難度。此外,也可以利用多組相鄰干涉光譜極值對應的波長分別求出光程差,然后再求平均值作為測量結果,以提高該方法的測量精度。但是,峰峰值法存在著一些缺點:當使用寬帶光源時,不可避免地會有與光源同分布的背景光疊加在接收光譜中,從而引起峰值處波長的改變,從而引入測量誤差。同時,當兩干涉信號之間的光程差很小,導致其干涉光譜只有一個干涉峰時,此法便不再適用。這種膜厚儀可以測量大氣壓下 。本地膜厚儀定做根據(jù)以上分析可知 ,白光干...
由于不同性質和形態(tài)的薄膜對系統(tǒng)的測量量程和精度的需求不盡相同,因而多種測量方法各有優(yōu)缺,難以一概而論。按照薄膜厚度的增加,適用的測量方式分別為橢圓偏振法、分光光度法、共聚焦法和干涉法。對于小于1μm的較薄薄膜,白光干涉輪廓儀的測量精度較低,分光光度法和橢圓偏振法較適合。而對于小于200nm的薄膜,由于透過率曲線缺少峰谷值,橢圓偏振法結果更加可靠?;诎坠飧缮嬖淼墓鈱W薄膜厚度測量方案目前主要集中于測量透明或者半透明薄膜,通過使用不同的解調技術處理白光干涉的圖樣,得到待測薄膜厚度。本章在詳細研究白光干涉測量技術的常用解調方案、解調原理及其局限性的基礎上,分析得到了常用的基于兩個相鄰干涉峰的白光干...
干涉法測量可表述為:白光干涉光譜法主要利用光的干涉原理和光譜分光原理,利用光在不同波長處的干涉光強進行求解。光源出射的光經分光棱鏡分成兩束,其中一束入射到參考鏡,另一束入射到測量樣品表面,兩束光均發(fā)生反射并入射到分光棱鏡,此時這兩束光會發(fā)生干涉。干涉光經光譜儀采集得到白光光譜干涉信號,經由計算機處理數(shù)據(jù)、顯示結果變化,之后讀出厚度值或變化量。如何建立一套基于白光干涉法的晶圓膜厚測量裝置,對于晶圓膜厚測量具有重要意義,設備價格、空間大小、操作難易程度都是其影響因素。標準樣品的選擇和使用對于保持儀器準確度至關重要。白光干涉膜厚儀排名用峰峰值法處理光譜數(shù)據(jù)時,被測光程差的分辨率取決于光譜儀或CCD的...
對同一靶丸相同位置進行白光垂直掃描干涉,建立靶丸的垂直掃描干涉裝置,通過控制光學輪廓儀的運動機構帶動干涉物鏡在垂直方向上的移動,從而測量到光線穿過靶丸后反射到參考鏡與到達基底直接反射回參考鏡的光線之間的光程差,顯然,當一束平行光穿過靶丸后,偏離靶丸中心越遠的光線,測量到的有效壁厚越大,其光程差也越大,但這并不表示靶丸殼層的厚度,存在誤差,穿過靶丸中心的光線測得的光程差才對應靶丸的上、下殼層的厚度??梢耘浜喜煌能浖M行分析和數(shù)據(jù)處理,例如建立數(shù)據(jù)庫、統(tǒng)計數(shù)據(jù)等;本地膜厚儀定做價格白光干涉光譜分析是目前白光干涉測量的一個重要方向 ,此項技術主要是利用光譜儀將對條紋的測量轉變成為對不同波長光譜的測...
在對目前常用的白光干涉測量方案進行比較研究后發(fā)現(xiàn),當兩個干涉光束的光程差非常小導致干涉光譜只有一個峰時,基于相鄰干涉峰間距的解調方案不再適用。因此,我們提出了一種基于干涉光譜單峰值波長移動的測量方案,適用于極小光程差。這種方案利用干涉光譜的峰值波長會隨光程差變化而周期性地出現(xiàn)紅移和藍移,當光程差在較小范圍內變化時,峰值波長的移動與光程差成正比。我們在光纖白光干涉溫度傳感系統(tǒng)上驗證了這一測量方案,并成功測量出光纖端面半導體鍺薄膜的厚度。實驗表明,鍺膜厚度為一定值,與臺階儀測量結果存在差異是由于薄膜表面本身并不光滑,臺階儀的測量結果只能作為參考值。誤差主要來自光源的波長漂移和溫度誤差??傊?,白光干...
常用白光垂直掃描干涉系統(tǒng)的原理:入射的白光光束通過半反半透鏡進入到顯微干涉物鏡后,被分光鏡分成兩部分,一個部分入射到固定的參考鏡,一部分入射到樣品表面,當參考鏡表面和樣品表面的反射光通過分光鏡后,再次匯聚產生干涉條紋,干涉光通過透鏡后,利用電荷耦合器(CCD)可探測整個視場內雙白光光束的干涉圖像。利用Z向精密位移臺帶動干涉鏡頭或樣品臺Z向掃描,可獲得一系列的干涉圖像。根據(jù)干涉圖像序列中對應點的光強隨光程差變化曲線,可得該點的Z向相對位移;然后,由CCD圖像中每個像素點光強最大值對應的Z向位置獲得被測樣品表面的三維形貌。白光干涉膜厚測量技術可以實現(xiàn)對薄膜的大范圍測量和分析。高速膜厚儀推薦自上世紀...
2e(n22一n12sin2i)1/2+δ’=kλ,k=1,2,3,4,5...(1) 2e(n22一n12sin2i)1/2+δ’=(2k+1)λ/2,k=0,1,2,3,4,...(2) 當膜的厚度e與波長A不可比擬時,有下列情況出現(xiàn):(1)膜厚e遠遠大于波長^時,由于由同一波列分解出來的2列波的光程差已超過相干民度.因而不能相遇,故不能發(fā)生干涉…,沒有明紋或暗紋出現(xiàn).(2)膜厚e遠遠小于波長^時,相干條件(1),(2)式中e一0,2相干光束之間的光程差已主要受半波損失d7的影響,而膜厚e和入射角i實際上對光程差已沒有貢獻.若半波損失∥存在,就發(fā)生相消干涉,反之,就發(fā)生相長...
晶圓對于半導體器件至關重要,膜厚是影響晶圓物理性質的重要參數(shù)之一。通常對膜厚的測量有橢圓偏振法、探針法、光學法等,橢偏法設備昂貴,探針法又會損傷晶圓表面。利用光學原理進行精密測試,一直是計量和測試技術領域中的主要方法之一,在光學測量領域,基于干涉原理的測量系統(tǒng)已成為物理量檢測中十分精確的系統(tǒng)之一。光的干涉計量與測試本質是以光波的波長作為單位來進行計量的,現(xiàn)代的干涉測試與計量技術已能達到一個波長的幾百分之一的測量精度,干涉測量的更大特點是它具有更高的靈敏度(或分辨率)和精度,。而且絕大部分干涉測試都是非接觸的,不會對被測件帶來表面損傷和附加誤差;測量對象較廣,并不局限于金屬或非金屬;可以檢測多參...
針對微米級工業(yè)薄膜厚度測量 ,研究了基于寬光譜干涉的反射式法測量方法。根據(jù)薄膜干涉及光譜共聚焦原理 ,綜合考慮成本、穩(wěn)定性、體積等因素要求,研制了滿足工業(yè)應用的小型薄膜厚度測量系統(tǒng)。根據(jù)波長分辨下的薄膜反射干涉光譜模型,結合經典模態(tài)分解和非均勻傅里葉變換思想,提出了一種基于相位功率譜分析的膜厚解算算法,能有效利用全光譜數(shù)據(jù)準確提取相位變化,對由環(huán)境噪聲帶來的假頻干擾,具有很好的抗干擾性。通過對PVC標準厚度片,PCB板芯片膜層及鍺基SiO2膜層的測量實驗對系統(tǒng)性能進行了驗證,結果表明測厚系統(tǒng)具有1~75μm厚度的測量量程,μm.的測量不確定度。由于無需對焦,可在10ms內完成單次測量,滿足工...
白光干涉光譜分析是目前白光干涉測量的一個重要方向。此項技術通過使用光譜儀將對條紋的測量轉變?yōu)閷Σ煌ㄩL光譜的測量,分析被測物體的光譜特性,得到相應的長度信息和形貌信息。與白光掃描干涉術相比,它不需要大量的掃描過程,因此提高了測量效率,并減小了環(huán)境對其影響。此項技術能夠測量距離、位移、塊狀材料的群折射率以及多層薄膜厚度等。白光干涉光譜分析基于頻域干涉的理論,采用白光作為寬波段光源,經過分光棱鏡折射為兩束光。這兩束光分別經由參考面和被測物體入射,反射后再次匯聚合成,并由色散元件分光至探測器,記錄頻域干涉信號。這個光譜信號包含了被測表面信息,如果此時被測物體是薄膜,則薄膜的厚度也包含在光譜信號當中。...
由于不同性質和形態(tài)的薄膜對系統(tǒng)的測量量程和精度的需求不盡相同,因而多種測量方法各有優(yōu)缺,難以一概而論。將上述各測量特點總結如表1-1所示,按照薄膜厚度的增加,適用的測量方式分別為橢圓偏振法、分光光度法、共聚焦法和干涉法。對于小于1μm的較薄薄膜,白光干涉輪廓儀的測量精度較低,分光光度法和橢圓偏振法較適合。而對于小于200 nm的薄膜,由于透過率曲線缺少峰谷值,橢圓偏振法結果更加可靠?;诎坠飧缮嬖淼墓鈱W薄膜厚度測量方案目前主要集中于測量透明或者半透明薄膜,通過使用不同的解調技術處理白光干涉的圖樣,得到待測薄膜厚度。本章在詳細研究白光干涉測量技術的常用解調方案、解調原理及其局限性的基礎上,分析...
白光干涉測量技術,也稱為光學低相干干涉測量技術,使用的是低相干的寬譜光源,如超輻射發(fā)光二極管、發(fā)光二極管等。與所有光學干涉原理一樣,白光干涉也是通過觀察干涉圖案變化來分析干涉光程差變化,并通過各種解調方案實現(xiàn)對待測物理量的測量。采用寬譜光源的優(yōu)點是,由于白光光源的相干長度很?。ㄒ话銥閹孜⒚椎綆资⒚字g),所有波長的零級干涉條紋重合于主極大值,即中心條紋,與零光程差的位置對應。因此,中心零級干涉條紋的存在為測量提供了一個可靠的位置參考,只需一個干涉儀即可進行待測物理量的測量,克服了傳統(tǒng)干涉儀不能進行測量的缺點。同時,相對于其他測量技術,白光干涉測量方法還具有環(huán)境不敏感、抗干擾能力強、動態(tài)范圍大...
通過白光干涉理論分析,詳細介紹了白光垂直掃描干涉技術和白光反射光譜技術的基本原理,并完成了應用于測量靶丸殼層折射率和厚度分布實驗裝置的設計和搭建。該實驗裝置由白光反射光譜探測模塊、靶丸吸附轉位模塊、三維運動模塊和氣浮隔震平臺等組成,能夠實現(xiàn)對靶丸的負壓吸附、靶丸位置的精密調整以及360°范圍的旋轉和特定角度下靶丸殼層白光反射光譜的測量?;诎坠獯怪睊呙韪缮婧桶坠夥瓷涔庾V的基本原理,提出了一種聯(lián)合使用的靶丸殼層折射率測量方法。該方法利用白光反射光譜測量靶丸殼層光學厚度,利用白光垂直掃描干涉技術測量光線通過靶丸殼層后的光程增量,從而可以計算得到靶丸的折射率和厚度數(shù)據(jù)。光路長度越長,儀器分辨率越高,...
白光光譜法克服了干涉級次的模糊識別問題,具有測量范圍大,連續(xù)測量時波動范圍小的特點,但在實際測量中,由于測量誤差、儀器誤差、擬合誤差等因素,干涉級次的測量精度仍其受影響,會出現(xiàn)干擾級次的誤判和干擾級次的跳變現(xiàn)象。導致公式計算得到的干擾級次m值與實際譜峰干涉級次m'(整數(shù))之間有誤差。為得到準確的干涉級次,本文依據(jù)干涉級次的連續(xù)特性設計了校正流程圖,獲得了靶丸殼層光學厚度的精確值。導入白光干涉光譜測量曲線。白光干涉膜厚測量技術可以應用于光學元件制造中的薄膜厚度管控。塑料薄膜膜厚儀干涉法作為面掃描方式可以一次性對薄膜局域內的厚度進行解算 ,適用于對面型整體形貌特征要求較高的測量對象。干涉法算法在于...
針對微米級工業(yè)薄膜厚度測量,開發(fā)了一種基于寬光譜干涉的反射式法測量方法,并研制了適用于工業(yè)應用的小型薄膜厚度測量系統(tǒng),考慮了成本、穩(wěn)定性、體積等因素要求。該系統(tǒng)結合了薄膜干涉和光譜共聚焦原理,采用波長分辨下的薄膜反射干涉光譜模型,利用經典模態(tài)分解和非均勻傅里葉變換的思想,提出了一種基于相位功率譜分析的膜厚解算算法。該算法能夠有效利用全光譜數(shù)據(jù)準確提取相位變化,抗干擾能力強,能夠排除環(huán)境噪聲等假頻干擾。經過對PVC標準厚度片、PCB板芯片膜層及鍺基SiO2膜層的測量實驗驗證,結果表明該測厚系統(tǒng)具有1~75微米厚度的測量量程和微米級的測量不確定度,而且無需對焦,可以在10ms內完成單次測量,滿足工...
干涉測量法[9-10]是基于光的干涉原理實現(xiàn)對薄膜厚度測量的光學方法 ,是一種高精度的測量技術。采用光學干涉原理的測量系統(tǒng)一般具有結構簡單,成本低廉,穩(wěn)定性好,抗干擾能力強,使用范圍廣等優(yōu)點。對于大多數(shù)的干涉測量任務,都是通過薄膜表面和基底表面之間產生的干涉條紋的形狀和分布規(guī)律,來研究干涉裝置中待測物理量引入的光程差或者是位相差的變化,從而達到測量目的。光學干涉測量方法的測量精度可達到甚至優(yōu)于納米量級,而利用外差干涉進行測量,其精度甚至可以達到10-3nm量級[11]。根據(jù)所使用光源的不同,干涉測量方法又可以分為激光干涉測量和白光干涉測量兩大類。激光干涉測量的分辨率更高,但是不能實現(xiàn)對靜態(tài)信號...
傅里葉變換是白光頻域解調方法中的一種低精度信號解調方法,起初由G.F.Fernando和T.Liu等人提出,用于低精度光纖法布里-珀羅傳感器的解調。該解調方案的原理是通過傅里葉變換得到頻域的峰值頻率從而獲得光程差,并得到待測物理量的信息。傅里葉變換解調方案的優(yōu)勢是解調速度快,受干擾信號影響較小,但精度不高。根據(jù)數(shù)字信號處理FFT理論,若輸入光源波長范圍為[λ1,λ2],則所測光程差的理論小分辨率為λ1λ2/(λ2-λ1),因此該方法主要應用于解調精度要求不高的場合。傅里葉變換白光干涉法是對傅里葉變換法的改進。該方法總結起來是對采集到的光譜信號進行傅里葉變換,然后濾波、提取主頻信號,接著進行逆傅...
基于表面等離子體共振傳感的測量方案,利用共振曲線的三個特征參量半高寬、—共振角和反射率小值,通過反演計算得到待測金屬薄膜的厚度。該測量方案可同時得到金屬薄膜的介電常數(shù)和厚度,操作方法簡單。我們利用Kretschmann型結構的表面等離子體共振實驗系統(tǒng),測得金膜在入射光波長分別為632.8nm和652.1nm時的共振曲線,由此得到金膜的厚度為55.2nm。由于該方案是一種強度測量方案,測量精度受環(huán)境影響較大,且測量結果存在多值性的問題,所以我們進一步對偏振外差干涉的改進方案進行了理論分析,根據(jù)P光和S光之間相位差的變化實現(xiàn)厚度測量??梢耘浜喜煌能浖M行分析和數(shù)據(jù)處理,例如建立數(shù)據(jù)庫、統(tǒng)計數(shù)據(jù)等...
干涉法與分光光度法都是利用相干光形成等厚干涉條紋的原理來確定薄膜厚度和折射率 ,然而與薄膜自發(fā)產生的等傾干涉不同,干涉法是通過設置參考光路,形成與測量光路間的干涉條紋,因此其相位信息包含兩個部分,分別是由參考平面和測量平面間掃描高度引起的附加相位和由透明薄膜內部多次反射引起的膜厚相位。干涉法測量光路使用面陣CCD接收參考平面和測量平面間相干波面的干涉光強分布,不同于以上三種點測量方式,可一次性生成薄膜待測區(qū)域的表面形貌信息,但同時由于存在大量軸向掃描和數(shù)據(jù)解算,完成單次測量的時間相對較長。白光干涉膜厚測量技術可以應用于光學元件制造中的薄膜厚度控制。高精度膜厚儀制造廠家常用白光垂直掃描干涉系統(tǒng)的...
白光干涉頻域解調顧名思義是在頻域分析解調信號,測量裝置與時域解調裝置幾乎相同,只需把光強測量裝置換為CCD或者是光譜儀,接收到的信號是光強隨著光波長的分布。由于時域解調中接收到的信號是一定范圍內所有波長的光強疊加,因此將頻譜信號中各個波長的光強疊加,即可得到與它對應的時域接收信號。由此可見,頻域的白光干涉條紋不僅包含了時域白光干涉條紋的所有信息,還包含了時域干涉條紋中沒有的波長信息。在頻域干涉中,當兩束相干光的光程差遠大于光源的相干長度時,仍可以在光譜儀上觀察到頻域干涉條紋。這是由于光譜儀內部的光柵具有分光作用,能夠將寬譜光變成窄帶光譜,從而增加了光譜的相干長度。這一解調技術的優(yōu)點就是在整個測...
薄膜在現(xiàn)代光學、電子、醫(yī)療、能源和建材等技術領域得到廣泛應用,可以提高器件性能。但是由于薄膜制備工藝和生產環(huán)境等因素的影響,成品薄膜存在厚度分布不均和表面粗糙度大等問題,導致其光學和物理性能無法達到設計要求,嚴重影響其性能和應用。因此,需要開發(fā)出精度高、體積小、穩(wěn)定性好的測量系統(tǒng)以滿足微米級工業(yè)薄膜的在線檢測需求。當前的光學薄膜測厚方法無法同時兼顧高精度、輕小體積和合理的成本,而具有納米級測量分辨率的商用薄膜測厚儀器價格昂貴、體積大,無法滿足工業(yè)生產現(xiàn)場的在線測量需求。因此,提出了一種基于反射光譜原理的高精度工業(yè)薄膜厚度測量解決方案,研發(fā)了小型化、低成本的薄膜厚度測量系統(tǒng),并提出了一種無需標定...
在納米量級薄膜的各項相關參數(shù)中 ,薄膜材料的厚度是薄膜設計和制備過程中的重要參數(shù),是決定薄膜性質和性能的基本參量之一,它對于薄膜的光學、力學和電磁性能等都有重要的影響[3]。但是由于納米量級薄膜的極小尺寸及其突出的表面效應,使得對其厚度的準確測量變得困難。經過眾多科研技術人員的探索和研究,新的薄膜厚度測量理論和測量技術不斷涌現(xiàn),測量方法實現(xiàn)了從手動到自動,有損到無損測量。由于待測薄膜材料的性質不同,其適用的厚度測量方案也不盡相同。對于厚度在納米量級的薄膜,利用光學原理的測量技術應用。相比于其他方法,光學測量方法因為具有精度高,速度快,無損測量等優(yōu)勢而成為主要的檢測手段。其中具有代表性的測量方法...
白光干涉光譜分析是目前白光干涉測量的一個重要方向,此項技術主要是利用光譜儀將對條紋的測量轉變成為對不同波長光譜的測量。通過分析被測物體的光譜特性,就能夠得到相應的長度信息和形貌信息。相比于白光掃描干涉術,它不需要大量的掃描過程,因此提高了測量效率,而且也減小了環(huán)境對它的影響。此項技術能夠測量距離、位移、塊狀材料的群折射率以及多層薄膜厚度。白干干涉光譜法是基于頻域干涉的理論,采用白光作為寬波段光源,經過分光棱鏡,被分成兩束光,這兩束光分別入射到參考面和被測物體,反射回來后經過分光棱鏡合成后,由色散元件分光至探測器,記錄頻域上的干涉信號。此光譜信號包含了被測表面的信息,如果此時被測物體是薄膜,則薄...
光纖白光干涉測量使用的是寬譜光源。在選擇光源時,需要重點考慮光源的輸出光功率和中心波長的穩(wěn)定性。由于本文所設計的解調系統(tǒng)是通過測量干涉峰值的中心波長移動來實現(xiàn)的,因此光源中心波長的穩(wěn)定性對實驗結果會產生很大的影響。實驗中我們選擇使用由INPHENIX公司生產的SLED光源,相對于一般的寬帶光源具有輸出功率高、覆蓋光譜范圍寬等優(yōu)點。該光源采用+5V的直流供電,標定中心波長為1550nm,且其輸出功率在一定范圍內可調。驅動電流可以達到600mA。白光干涉膜厚儀的應用非常廣,特別是在半導體、光學、電子和化學等領域。膜厚儀產品使用誤區(qū)由于不同性質和形態(tài)的薄膜對系統(tǒng)的測量量程和精度的需求不盡相同,因而多...
對同一靶丸相同位置進行白光垂直掃描干涉,建立靶丸的垂直掃描干涉裝置,通過控制光學輪廓儀的運動機構帶動干涉物鏡在垂直方向上的移動,從而測量到光線穿過靶丸后反射到參考鏡與到達基底直接反射回參考鏡的光線之間的光程差,顯然,當一束平行光穿過靶丸后,偏離靶丸中心越遠的光線,測量到的有效壁厚越大,其光程差也越大,但這并不表示靶丸殼層的厚度,存在誤差,穿過靶丸中心的光線測得的光程差才對應靶丸的上、下殼層的厚度。白光干涉膜厚測量技術可以實現(xiàn)對薄膜的在線檢測和控制;國內膜厚儀行業(yè)應用光譜法是一種以光的干涉效應為基礎的薄膜厚度測量方法,分為反射法和透射法兩種類型。入射光在薄膜-基底-薄膜界面上的反射和透射會引起多...
由于不同性質和形態(tài)的薄膜對系統(tǒng)的測量量程和精度的需求不相同,因而多種測量方法各有優(yōu)缺,難以一概而論。將各測量特點總結所示,按照薄膜厚度的增加,適用的測量方式分別為橢圓偏振法、分光光度法、共聚焦法和干涉法。對于小于1μm的較薄薄膜,白光干涉輪廓儀的測量精度較低,分光光度法和橢圓偏振法較適合。而對于小于200nm的薄膜,由于透過率曲線缺少峰谷值,橢圓偏振法結果更加可靠?;诎坠飧缮嬖淼墓鈱W薄膜厚度測量方案目前主要集中于測量透明或者半透明薄膜,通過使用不同的解調技術處理白光干涉的圖樣,得到待測薄膜厚度。本章在詳細研究白光干涉測量技術的常用解調方案、解調原理及其局限性的基礎上,分析得到了常用的基于兩...
由于不同性質和形態(tài)的薄膜對系統(tǒng)的測量量程和精度的需求不盡相同,因而多種測量方法各有優(yōu)缺,難以一概而論。將上述各測量特點總結如表1-1所示,按照薄膜厚度的增加,適用的測量方式分別為橢圓偏振法、分光光度法、共聚焦法和干涉法。對于小于1μm的較薄薄膜,白光干涉輪廓儀的測量精度較低,分光光度法和橢圓偏振法較適合。而對于小于200 nm的薄膜,由于透過率曲線缺少峰谷值,橢圓偏振法結果更加可靠。基于白光干涉原理的光學薄膜厚度測量方案目前主要集中于測量透明或者半透明薄膜,通過使用不同的解調技術處理白光干涉的圖樣,得到待測薄膜厚度。本章在詳細研究白光干涉測量技術的常用解調方案、解調原理及其局限性的基礎上,分析...
干涉測量法[9-10]是基于光的干涉原理實現(xiàn)對薄膜厚度測量的光學方法 ,是一種高精度的測量技術。采用光學干涉原理的測量系統(tǒng)一般具有結構簡單,成本低廉,穩(wěn)定性好,抗干擾能力強,使用范圍廣等優(yōu)點。對于大多數(shù)的干涉測量任務,都是通過薄膜表面和基底表面之間產生的干涉條紋的形狀和分布規(guī)律,來研究干涉裝置中待測物理量引入的光程差或者是位相差的變化,從而達到測量目的。光學干涉測量方法的測量精度可達到甚至優(yōu)于納米量級,而利用外差干涉進行測量,其精度甚至可以達到10-3nm量級[11]。根據(jù)所使用光源的不同,干涉測量方法又可以分為激光干涉測量和白光干涉測量兩大類。激光干涉測量的分辨率更高,但是不能實現(xiàn)對靜態(tài)信號...
光纖白光干涉此次實驗所設計的解調系統(tǒng)是通過檢測干涉峰值的中心波長的移動實現(xiàn)的,所以光源中心波長的穩(wěn)定性將對實驗結果產生很大的影響。實驗中我們所選用的光源是由INPHENIX公司生產的SLED光源,相對于一般的寬帶光源具有輸出功率高、覆蓋光譜范圍寬等特點。該光源采用+5V的直流供電,標定中心波長為1550nm,且其輸出功率在一定范圍內是可調的,驅動電流可以達到600mA。測量使用的是寬譜光源。光源的輸出光功率和中心波長的穩(wěn)定性是光源選取時需要重點考慮的參數(shù)。可測量大氣壓下薄膜厚度在1納米到1毫米之間。國內膜厚儀技術指導白光光譜法克服了干涉級次的模糊識別問題,具有測量范圍大,連續(xù)測量時波動范圍小的...
靶丸殼層折射率 、厚度及其分布參數(shù)是激光慣性約束聚變(ICF)物理實驗中非常關鍵的參數(shù),精密測量靶丸殼層折射率、厚度及其分布對ICF精密物理實驗研究具有非常重要的意義。由于靶丸尺寸微?。▉喓撩琢考墸?、結構特殊(球形結構)、測量精度要求高,如何實現(xiàn)靶丸殼層折射率及其厚度分布的精密測量是靶參數(shù)測量技術研究中重要的研究內容。本論文針對靶丸殼層折射率及厚度分布的精密測量需求,開展了基于白光干涉技術的靶丸殼層折射率及厚度分布測量技術研究。高精度的白光干涉膜厚儀通常采用Michelson干涉儀的結構。防水膜厚儀廠家現(xiàn)貨通過白光干涉理論分析,詳細介紹了白光垂直掃描干涉技術和白光反射光譜技術的基本原理,并完成...