量子效應也決定納米結(jié)構(gòu)新的電,光和化學性質(zhì)。因此量子效應在鄰近的納米科學,納米技術,如納米電子學,先進能源系統(tǒng)和納米生物技術學科范圍得到更多注意。納米測量技術是利用改制的掃描隧道顯微鏡進行微形貌測量,這個技術已成功的應用于石墨表面和生物樣本的納米級測量。安全一直是必須認真考慮的問題。電測量工具會輸出有危險的、甚至是致命的電壓和電流。清楚儀器使用中何時會發(fā)生這些情形顯得極為重要,只有這樣人們才能采取恰當?shù)陌踩婪妒侄?。請認真閱讀并遵從各種工具附帶的安全指示。通過納米力學測試,可評估納米材料在極端環(huán)境下的可靠性。重慶紡織納米力學測試
本文中主要對當今幾種主要材料納觀力學與納米材料力學特性測試方法:納米硬度技術、納米云紋技術、掃描力顯微鏡技術等進行概述。納米硬度技術。隨著現(xiàn)代材料表面工程、微電子、集成微光機電 系統(tǒng)、生物和醫(yī)學材料的發(fā)展試樣本身或表面改性層厚度越來越小。傳統(tǒng)的硬度測量已無法滿足新材料研究的需要,于是納米硬度技術應運而生。納米硬度計是納米硬度測量的主要儀器,它是一種檢測材料微小體積內(nèi)力學性能的測試儀器,包括壓痕硬度和劃痕硬度兩種工作模式。由于壓痕或劃痕深度一般控制在微米甚至納米尺度,因此該類儀器已成為電子薄膜、涂層、材料表面及其改性的力學性能檢測的理想手段。它不需要將表層從基體上剝離,便可直接給出材料表層力學性質(zhì)的空間分布。海南核工業(yè)納米力學測試供應納米力學測試能夠揭示材料表面的微觀結(jié)構(gòu)與性能之間的關系。
2005 年,中國科學院上海硅酸鹽研究所的曾華榮研究員在國內(nèi)率先單獨開發(fā)出定頻成像模式的AFAM,但不能測量模量。隨后,同濟大學、北京工業(yè)大學等單位也對這種成像模式進行了研究。2011 年初,我們研究組將雙頻共振追蹤技術用于AFAM,實現(xiàn)了快速的納米模量成像(一幅256×256 像素的圖像只需1~2min),并對其準確度和靈敏度進行了系統(tǒng)研究。較近幾年,AFAM 引起了越來越多國內(nèi)外學者的關注。然而,相對于其他AFM 模式,AFAM 的測量原理涉及梁振動力學和接觸力學,初學者不容易掌握。
納米力學從研究的手段上可分為納觀計算力學和納米實驗力學。納米計算力學包括量子力學計算方法、分子動力學計算和跨層次計算等不同類型的數(shù)值模擬方法。納米實驗力學則有兩層含義:一是以納米層次的分辨率來測量力學場,即所謂的材料納觀實驗力學;二是對特征尺度為1-100nm之間的微細結(jié)構(gòu)進行的實驗力學研究,即所謂的納米材料實驗力學。納米實驗力學研究有兩種途徑:一是對常規(guī)的硬度測試技術、云紋法等宏觀力學測試技術進行改造,使它們能適應納米力學測量的需要;另一類是創(chuàng)造如原子力顯微鏡、摩擦力顯微鏡等新的納米力學測量技術建立新原理、新方法。在進行納米力學測試時,需要選擇合適的測試方法和參數(shù),以確保測試結(jié)果的準確性和可靠性。
納米力學(Nanomechanics)是研究納米范圍物理系統(tǒng)的基本力學(彈性,熱和動力過程)的一個分支。納米力學為納米技術提供科學基礎。作為基礎科學,納米力學以經(jīng)驗原理(基本觀察)為基礎,包括:一般力學原理和物體變小而出現(xiàn)的一些特別原理。納米力學(Nanomechanics)是研究納米范圍物理系統(tǒng)基本力學性質(zhì)(彈性,熱和動力過程)的納米科學的一個分支。納米力學為納米技術提供了科學基礎。納米力學是經(jīng)典力學,固態(tài)物理,統(tǒng)計力學,材料科學和量子化學等的交叉學科。測試內(nèi)容豐富多樣,包括硬度、彈性模量、摩擦系數(shù)等,助力材料研究。重慶紡織納米力學測試
原子力顯微鏡(AFM)在納米力學測試中發(fā)揮著重要作用,可實現(xiàn)高分辨率成像。重慶紡織納米力學測試
國內(nèi)的江西省科學院、清華大學、南昌大學等采用掃描探針顯微鏡系列,如掃描隧道顯微鏡、原子力顯微鏡等,對高精度納米和亞納米量級的光學超光滑表面的粗糙度和微輪廓進行測量研究。天津大學劉安偉等在量子隧道效應的基礎上,建立了適用于平坦表面的掃描隧道顯微鏡微輪廓測量的數(shù)學模型,仿真結(jié)果較好地反映了掃描隧道顯微鏡對樣品表面輪廓的測量過程。清華大學李達成等研制成功在線測量超光滑表面粗糙度的激光外差干涉儀,該儀器以穩(wěn)頻半導體激光器作為光源,共光路設計提高了抗外界環(huán)境干擾的能力,其縱向和橫向分辨率分別為0.39nm和0.73μm。李巖等提出了一種基于頻率分裂激光器光強差法的納米測量原理。重慶紡織納米力學測試