將近場(chǎng)聲學(xué)和掃描探針顯微術(shù)相結(jié)合的掃描探針聲學(xué)顯微術(shù)是近些年來(lái)發(fā)展的納米力學(xué)測(cè)試方法。掃描探針聲學(xué)顯微術(shù)有多種應(yīng)用模式,如超聲力顯微術(shù)(ultrasonic force microscopy,UFM)、原子力聲學(xué)顯微術(shù)(atomic force acoustic microscopy,AFAM)、超聲原子力顯微術(shù)(ultrasonic atomic force microscopy,UAFM),掃描聲學(xué)力顯微術(shù)(scanning acoustic force microscopy,SAFM)等。在以上幾種應(yīng)用模式中,以基于接觸共振檢測(cè)的AFAM 和UAFM 這兩種方法應(yīng)用較為普遍,有時(shí)也將它們統(tǒng)稱為接觸共振力顯微術(shù)(contact resonance force microscopy,CRFM)。在納米尺度上,材料的力學(xué)性質(zhì)往往與其宏觀尺度下的性質(zhì)有明顯不同,因此納米力學(xué)測(cè)試具有重要意義。廣東電線電纜納米力學(xué)測(cè)試廠商
FT-NMT03納米力學(xué)測(cè)試系統(tǒng)可以配合SEM/FIB原位精確直接地測(cè)量納米纖維的力學(xué)特性。微力傳感器加載微力,納米力學(xué)測(cè)試結(jié)合高分辨位置編碼器可以對(duì)納米纖維進(jìn)行拉伸、循環(huán)、蠕變、斷裂等形變測(cè)試。力-形變(應(yīng)力-應(yīng)變)曲線可以定量的表征納米纖維的材料特性。此外,納米力學(xué)測(cè)試結(jié)合樣品架電連接,可以定量表征電-機(jī)械性質(zhì)。位置穩(wěn)定性,納米力學(xué)測(cè)試對(duì)于納米纖維的精確拉伸測(cè)試,納米力學(xué)測(cè)試系統(tǒng)的位移是測(cè)試不穩(wěn)定性的主要來(lái)源。圖2展示了FT-NMT03納米力學(xué)測(cè)試系統(tǒng)位移的統(tǒng)計(jì)學(xué)評(píng)價(jià),從中可以找到每一個(gè)測(cè)試間隔內(nèi)位移導(dǎo)致的不確定性,例如100s內(nèi)為450pm,意思是65%(或95%)的概率,納米力學(xué)測(cè)試系統(tǒng)在100s的時(shí)間間隔內(nèi)的位移穩(wěn)定性小于±450pm(或±900pm)。廣東電線電纜納米力學(xué)測(cè)試廠商在進(jìn)行納米力學(xué)測(cè)試時(shí),需要特別注意樣品的制備和處理過(guò)程,以避免引入誤差。
量子效應(yīng)也決定納米結(jié)構(gòu)新的電,光和化學(xué)性質(zhì)。因此量子效應(yīng)在鄰近的納米科學(xué),納米技術(shù),如納米電子學(xué),先進(jìn)能源系統(tǒng)和納米生物技術(shù)學(xué)科范圍得到更多注意。納米測(cè)量技術(shù)是利用改制的掃描隧道顯微鏡進(jìn)行微形貌測(cè)量,這個(gè)技術(shù)已成功的應(yīng)用于石墨表面和生物樣本的納米級(jí)測(cè)量。安全一直是必須認(rèn)真考慮的問(wèn)題。電測(cè)量工具會(huì)輸出有危險(xiǎn)的、甚至是致命的電壓和電流。清楚儀器使用中何時(shí)會(huì)發(fā)生這些情形顯得極為重要,只有這樣人們才能采取恰當(dāng)?shù)陌踩婪妒侄?。?qǐng)認(rèn)真閱讀并遵從各種工具附帶的安全指示。
納米劃痕法,納米劃痕硬度計(jì)主要是通過(guò)測(cè)量壓頭在法向和切向上的載荷和位移的連續(xù)變化過(guò)程,進(jìn)而研究材料的摩擦性能、塑性性能和斷裂性能的。納米劃痕儀器的設(shè)計(jì)主要有兩種方案 納米劃痕計(jì)和壓痕計(jì),合二為一即劃痕計(jì)的法向力和壓痕深度由高分辨率的壓痕計(jì)提供,同時(shí)記錄勻速移動(dòng)的試樣臺(tái)的位移,使壓頭沿試樣表面進(jìn)行刻劃,切向力由壓桿上的兩個(gè)相互垂直的力傳感器測(cè)量納米劃痕硬度計(jì)和壓痕計(jì)相互單獨(dú)。納米劃痕硬度計(jì),不只可以研究材料的摩擦磨損行為,還普遍應(yīng)用于薄膜的粘著失效和黏彈行為。對(duì)刻劃材料來(lái)說(shuō),不只載荷和壓入深度是重要的參數(shù),而且殘余劃痕的深度、寬度、凸起的高度在研究接觸壓力和實(shí)際摩擦也是十分重要的。目前,該類儀器已普遍應(yīng)用于各種電子薄膜、汽車噴漆、膠卷、光學(xué)鏡 頭、磁盤(pán)、化妝品(指甲油和口紅)等的質(zhì)量檢測(cè)。在納米力學(xué)測(cè)試中,常用的測(cè)試方法包括納米壓痕測(cè)試、納米拉伸測(cè)試和納米彎曲測(cè)試等。
除了采用彎曲振動(dòng)模式進(jìn)行測(cè)量外,Reinstadtler 等給出了探針扭轉(zhuǎn)振動(dòng)模式測(cè)量側(cè)向接觸剛度的理論基礎(chǔ)。通過(guò)同時(shí)測(cè)量探針微懸臂的彎曲振動(dòng)和扭轉(zhuǎn)振動(dòng),Hurley 和Turner提出了一種同時(shí)測(cè)量各向同性材料楊氏模量、剪切模量和泊松比的方法。Killgore 等提出了利用軟探針的高階模態(tài)進(jìn)行AFAM 定量化測(cè)試的方法,可以使探針施加在樣品上的力減小到10 nN,極大地?cái)U(kuò)展了這一方法的應(yīng)用范圍。Killgore 和Hurley提出了一種新的脈沖接觸共振的方法,將接觸共振與脈沖力模式相結(jié)合,不只能測(cè)量探針的接觸共振頻率和品質(zhì)因子,還可以測(cè)量針尖樣品之間黏附力的大小。納米力學(xué)測(cè)試還可以評(píng)估材料在高溫、低溫等極端環(huán)境下的性能表現(xiàn)。廣州微電子納米力學(xué)測(cè)試模塊
在醫(yī)學(xué)領(lǐng)域,納米力學(xué)測(cè)試可用于研究細(xì)胞和組織的力學(xué)性質(zhì)。廣東電線電纜納米力學(xué)測(cè)試廠商
原位納米力學(xué)測(cè)試系統(tǒng)(nanoindentation,instrumented-indentation testing,depth-sensing indentation,continuous-recording indentation,ultra low load indentation)是一類先進(jìn)的材料表面力學(xué)性能測(cè)試儀器。該類儀器裝有高分辨率的致動(dòng)器和傳感器,可以控制和監(jiān)測(cè)壓頭在材料中的壓入和退出,能提供高分辨率連續(xù)載荷和位移的測(cè)量。包括壓痕硬度和劃痕硬度兩種工作模式,主要應(yīng)用于測(cè)試各種薄膜(包括厚度小于100納米的超薄膜、多層復(fù)合膜、抗磨損膜、潤(rùn)滑膜、高分子聚合物膜、生物膜等)、多相復(fù)合材料的基體本構(gòu)和界面、金屬陣列復(fù)合材料、類金剛石碳涂層(DLC)、半導(dǎo)體材料、MEMS、生物醫(yī)學(xué)樣品(包括骨、牙齒、血管等)和生物材料、等在nano水平上的力學(xué)特性,還可以進(jìn)行納米機(jī)械加工。通過(guò)探針壓痕或劃痕來(lái)獲得材料微區(qū)的硬度、彈性模量、摩擦系數(shù)、磨損率、斷裂剛度、失效、蠕變、應(yīng)力釋放、分層、粘附力(結(jié)合力)、存儲(chǔ)模量、損失模量等力學(xué)數(shù)據(jù)。廣東電線電纜納米力學(xué)測(cè)試廠商