厚片吸塑在現(xiàn)代包裝中的重要性及應(yīng)用
壓縮機(jī)單層吸塑包裝:循環(huán)使用的創(chuàng)新解決方案
厚片吸塑產(chǎn)品選擇指南
厚片吸塑的類型、特點(diǎn)和優(yōu)勢(shì)
雙層吸塑圍板箱的優(yōu)勢(shì)及環(huán)保材料的可持續(xù)利用
厚片吸塑:革新包裝運(yùn)輸行業(yè)的效率與安全保障
選圍板箱品質(zhì)很重要——無錫鑫旺德行業(yè)品質(zhì)之選
雙層吸塑蓋子的創(chuàng)新應(yīng)用與優(yōu)勢(shì)解析
電機(jī)單層吸塑包裝的優(yōu)勢(shì)與應(yīng)用
雙層吸塑底托:提升貨物運(yùn)輸安全與效率的較佳選擇
根據(jù)以上分析可知,白光干涉時(shí)域解調(diào)方案的優(yōu)點(diǎn)是:①能夠?qū)崿F(xiàn)測量;②抗干擾能力強(qiáng),系統(tǒng)的分辨率與光源輸出功率的波動(dòng),光源的波長漂移以及外界環(huán)境對(duì)光纖的擾動(dòng)等因素?zé)o關(guān);③測量精度與零級(jí)干涉條紋的確定精度以及反射鏡的精度有關(guān);④結(jié)構(gòu)簡單,成本較低。但是,時(shí)域解調(diào)方法需要借助掃描部件移動(dòng)干涉儀一端的反射鏡來進(jìn)行相位補(bǔ)償,所以掃描裝置的分辨率將影響系統(tǒng)的精度。采用這種解調(diào)方案的測量分辨率一般是幾個(gè)微米,達(dá)到亞微米的分辨率,主要受機(jī)械掃描部件的分辨率和穩(wěn)定性限制。文獻(xiàn)[46]所報(bào)道的位移掃描的分辨率可以達(dá)到0.54μm。當(dāng)所測光程差較小時(shí),F(xiàn)-P腔前后表面干涉峰值相距很近,難以區(qū)分,此時(shí)時(shí)域解調(diào)方案的應(yīng)用受到限制。白光干涉膜厚測量技術(shù)可以應(yīng)用于光學(xué)通信中的薄膜透過率測量。高頻膜厚儀定做價(jià)格
自1986年E.Wolf證明了相關(guān)誘導(dǎo)光譜的變化以來,人們?cè)诶碚摵蛯?shí)驗(yàn)上展開了討論和研究。結(jié)果表明,動(dòng)態(tài)的光譜位移可以產(chǎn)生新的濾波器,應(yīng)用于光學(xué)信號(hào)處理和加密領(lǐng)域。在論文中,我們提出的基于白光干涉光譜單峰值波長移動(dòng)的解調(diào)方案,可以用于當(dāng)光程差非常小導(dǎo)致其干涉光譜只有一個(gè)干涉峰時(shí)的信號(hào)解調(diào),實(shí)現(xiàn)納米薄膜厚度測量。在頻域干涉中,當(dāng)干涉光程差超過光源相干長度的時(shí)候,仍然可以觀察到干涉條紋。出現(xiàn)這種現(xiàn)象的原因是白光光源的光譜可以看成是許多單色光的疊加,每一列單色光的相干長度都是無限的。當(dāng)我們使用光譜儀來接收干涉光譜時(shí),由于光譜儀光柵的分光作用,將寬光譜的白光變成了窄帶光譜,從而使相干長度發(fā)生變化。本地膜厚儀歡迎選購白光干涉膜厚測量技術(shù)可以實(shí)現(xiàn)對(duì)薄膜內(nèi)部結(jié)構(gòu)的測量。
光具有傳播的特性,不同波列在相遇的區(qū)域,振動(dòng)將相互疊加,是各列光波獨(dú)自在該點(diǎn)所引起的振動(dòng)矢量和。兩束光要發(fā)生干涉,應(yīng)必須滿足三個(gè)相干條件,即:頻率一致、振動(dòng)方向一致、相位差穩(wěn)定一致。發(fā)生干涉的兩束光在一些地方振動(dòng)加強(qiáng),而在另一些地方振動(dòng)減弱,產(chǎn)生規(guī)則的明暗交替變化。任何干涉測量都是完全建立在這種光波典型特性上的。下圖分別表示干涉相長和干涉相消的合振幅。與激光光源相比,白光光源的相干長度在幾微米到幾十微米內(nèi),通常都很短,更為重要的是,白光光源產(chǎn)生的干涉條紋具有一個(gè)典型的特征:即條紋有一個(gè)固定不變的位置,該固定位置對(duì)應(yīng)于光程差為零的平衡位置,并在該位置白光輸出光強(qiáng)度具有最大值,并通過探測該光強(qiáng)最大值,可實(shí)現(xiàn)樣品表面位移的精密測量。此外,白光光源具有系統(tǒng)抗干擾能力強(qiáng)、穩(wěn)定性好且動(dòng)態(tài)范圍大、結(jié)構(gòu)簡單,成本低廉等優(yōu)點(diǎn)。因此,白光垂直掃描干涉、白光反射光譜等基于白光干涉的光學(xué)測量技術(shù)在薄膜三維形貌測量、薄膜厚度精密測量等領(lǐng)域得以廣泛應(yīng)用。
白光干涉的相干原理早在1975年就已經(jīng)被提出,隨后于1976年在光纖通信領(lǐng)域中獲得了實(shí)現(xiàn)。1983年,BrianCulshaw的研究小組報(bào)道了白光干涉技術(shù)在光纖傳感領(lǐng)域中的應(yīng)用。隨后在1984年,報(bào)道了基于白光干涉原理的完整的位移傳感系統(tǒng)。該研究成果證明了白光干涉技術(shù)可以被用于測量能夠轉(zhuǎn)換成位移的物理參量。此后的幾年間,白光干涉應(yīng)用于溫度、壓力等的研究相繼被報(bào)道。自上世紀(jì)九十年代以來,白光干涉技術(shù)快速發(fā)展,提供了實(shí)現(xiàn)測量的更多的解決方案。近幾年以來,由于傳感器設(shè)計(jì)與研制的進(jìn)步,信號(hào)處理新方案的提出,以及傳感器的多路復(fù)用[39]等技術(shù)的發(fā)展,使得白光干涉測量技術(shù)的發(fā)展更加迅***光干涉膜厚測量技術(shù)可以通過對(duì)干涉曲線的分析實(shí)現(xiàn)對(duì)薄膜的厚度和形貌的聯(lián)合測量和分析。
傅里葉變換是白光頻域解調(diào)方法中一種低精度的信號(hào)解調(diào)方法。早是由G.F.Fernando和T.Liu等人提出,用于低精度光纖法布里-珀羅傳感器的解調(diào)。因此,該解調(diào)方案的原理是通過傅里葉變換得到頻域的峰值頻率從而獲得光程差,進(jìn)而得到待測物理量的信息。傅里葉變換解調(diào)方案的優(yōu)點(diǎn)是解調(diào)速度較快,受干擾信號(hào)的影響較小。但是其測量精度較低。根據(jù)數(shù)字信號(hào)處理FFT(快速傅里葉變換)理論,若輸入光源波長范圍為[]λ1,λ2,則所測光程差的理論小分辨率為λ1λ2/(λ2?λ1),所以此方法主要應(yīng)用于對(duì)解調(diào)精度要求不高的場合。傅里葉變換白光干涉法是對(duì)傅里葉變換法的改進(jìn)。該方法總結(jié)起來就是對(duì)采集到的光譜信號(hào)做傅里葉變換,然后濾波、提取主頻信號(hào)后進(jìn)行逆傅里葉變換,然后做對(duì)數(shù)運(yùn)算,并取其虛部做相位反包裹運(yùn)算,由獲得的相位得到干涉儀的光程差。該方法經(jīng)過實(shí)驗(yàn)證明其測量精度比傅里葉變換高。白光干涉膜厚測量技術(shù)可以應(yīng)用于納米制造中的薄膜厚度測量。防水膜厚儀按需定制
白光干涉膜厚測量技術(shù)可以通過對(duì)干涉圖像的分析實(shí)現(xiàn)對(duì)薄膜的形貌測量。高頻膜厚儀定做價(jià)格
光譜擬合法易于測量具有應(yīng)用領(lǐng)域,由于使用了迭代算法,因此該方法的優(yōu)缺點(diǎn)在很大程度上取決于所選擇的算法。隨著各種全局優(yōu)化算法的引入,遺傳算法和模擬退火算法等新算法被用于薄膜參數(shù)的測量。其缺點(diǎn)是不夠?qū)嵱?,該方法需要一個(gè)較好的薄膜的光學(xué)模型(包括色散系數(shù)、吸收系數(shù)、多層膜系統(tǒng)),但是在實(shí)際測試過程中,薄膜的色散和吸收的公式通常不準(zhǔn)確,尤其是對(duì)于多層膜體系,建立光學(xué)模型非常困難,無法用公式準(zhǔn)確地表示出來。在實(shí)際應(yīng)用中只能使用簡化模型,因此,通常全光譜擬合法不如極值法有效。另外該方法的計(jì)算速度慢也不能滿足快速計(jì)算的要求。高頻膜厚儀定做價(jià)格