開展白光干涉理論分析,在此基礎詳細介紹了白光垂直掃描干涉技術和白光反射光譜技術的基本原理,完成了應用于靶丸殼層折射率和厚度分布測量實驗裝置的設計及搭建。該實驗裝置主要由白光反射光譜探測模塊、靶丸吸附轉位模塊、三維運動模塊、氣浮隔震平臺等幾部分組成,可實現靶丸的負壓吸附、靶丸位置的精密調整以及靶丸360°范圍的旋轉及特定角度下靶丸殼層白光反射光譜的測量?;诎坠獯怪睊呙韪缮婧桶坠夥瓷涔庾V的基本原理,建立了二者聯用的靶丸殼層折射率測量方法,該方法利用白光反射光譜測量靶丸殼層光學厚度,利用白光垂直掃描干涉技術測量光線通過靶丸殼層后的光程增量,二者聯立即可求得靶丸折射率和厚度數據。白光干涉膜厚測量技術可以對不同材料的薄膜進行聯合測量和分析。廣西高速膜厚儀
在白光反射光譜探測模塊中,入射光經過分光鏡1分光后,一部分光通過物鏡聚焦到靶丸表面,靶丸殼層上、下表面的反射光經過物鏡、分光鏡1、聚焦透鏡、分光鏡2后,一部分光聚焦到光纖端面并到達光譜儀探測器,可實現靶丸殼層白光干涉光譜的測量,一部分光到達CCD探測器,可獲得靶丸表面的光學圖像。靶丸吸附轉位模塊和三維運動模塊分別用于靶丸的吸附定位以及靶丸特定角度轉位以及靶丸位置的輔助調整,測量過程中,將靶丸放置于軸系吸嘴前端,通過微型真空泵負壓吸附于吸嘴上;然后,移動位移平臺,將靶丸移動至CCD視場中心,通過Z向位移臺,使靶丸表面成像清晰;利用光譜儀探測靶丸殼層的白光反射光譜;靶丸在軸系的帶動下,平穩(wěn)轉位到特定角度,由于軸系的回轉誤差,轉位后靶丸可能偏移CCD視場中心,此時可通過調整軸系前端的調心結構,使靶丸定點位于視場中心并采集其白光反射光譜;重復以上步驟,可實現靶丸特定位置或圓周輪廓白光反射光譜數據的測量。為減少外界干擾和震動而引起的測量誤差,該裝置放置于氣浮平臺上,通過高性能的隔振效果可保證測量結果的穩(wěn)定性。 寶山區(qū)原裝膜厚儀白光干涉膜厚測量技術的應用涵蓋了材料科學、光學制造、電子工業(yè)等多個領域。
光學測厚方法集光學、機械、電子、計算機圖像處理技術為一體,以其光波長為測量基準,從原理上保證了納米級的測量精度。同時,光學測厚作為非接觸式的測量方法,被廣泛應用于精密元件表面形貌及厚度的無損測量。其中,薄膜厚度光學測量方法按光吸收、透反射、偏振和干涉等光學原理可分為分光光度法、橢圓偏振法、干涉法等多種測量方法。不同的測量方法,其適用范圍各有側重,褒貶不一。因此結合多種測量方法的多通道式復合測量法也有研究,如橢圓偏振法和光度法結合的光譜橢偏法,彩色共焦光譜干涉和白光顯微干涉的結合法等。
針對微米級工業(yè)薄膜厚度測量,研究了基于寬光譜干涉的反射式法測量方法。根據薄膜干涉及光譜共聚焦原理,綜合考慮成本、穩(wěn)定性、體積等因素要求,研制了滿足工業(yè)應用的小型薄膜厚度測量系統。根據波長分辨下的薄膜反射干涉光譜模型,結合經典模態(tài)分解和非均勻傅里葉變換思想,提出了一種基于相位功率譜分析的膜厚解算算法,能有效利用全光譜數據準確提取相位變化,對由環(huán)境噪聲帶來的假頻干擾,具有很好的抗干擾性。通過對PVC標準厚度片,PCB板芯片膜層及鍺基SiO2膜層的測量實驗對系統性能進行了驗證,結果表明測厚系統具有1~75μm厚度的測量量程,μm.的測量不確定度。由于無需對焦,可在10ms內完成單次測量,滿足工業(yè)級測量高效便捷的應用要求。 白光干涉膜厚測量技術可以通過對干涉曲線的分析實現對薄膜的厚度分布的測量和分析。
論文所研究的鍺膜厚度約300nm,導致其白光干涉輸出光譜只有一個干涉峰,此時常規(guī)基于相鄰干涉峰間距解調的方案(如峰峰值法等)將不再適用。為此,我們提出了一種基于單峰值波長移動的白光干涉測量方案,并設計搭建了膜厚測量系統。溫度測量實驗結果表明,峰值波長與溫度變化之間具有良好的線性關系。利用該測量方案,我們測得實驗用鍺膜的厚度為338.8nm,實驗誤差主要來自于溫度控制誤差和光源波長漂移。論文通過對納米級薄膜厚度的測量方案研究,實現了對鍺膜和金膜的厚度測量。論文主要的創(chuàng)新點是提出了白光干涉單峰值波長移動的解調方案,并將其應用于極短光程差的測量。白光干涉膜厚測量技術可以對薄膜的表面和內部進行聯合測量和分析。常用膜厚儀設備生產
白光干涉膜厚測量技術可以實現對薄膜內部結構的測量。廣西高速膜厚儀
利用包絡線法計算薄膜的光學常數和厚度,但目前看來包絡法還存在很多不足,包絡線法需要產生干涉波動,要求在測量波段內存在多個干涉極值點,且干涉極值點足夠多,精度才高。理想的包絡線是根據聯合透射曲線的切點建立的,在沒有正確方法建立包絡線時,通常使用拋物線插值法建立,這樣造成的誤差較大。包絡法對測量對象要求高,如果薄膜較薄或厚度不足情況下,會造成干涉條紋減少,干涉波峰個數較少,要利用干涉極值點建立包絡線就越困難,且利用拋物線插值法擬合也很困難,從而降低該方法的準確度。其次,薄膜吸收的強弱也會影響該方法的準確度,對于吸收較強的薄膜,隨干涉條紋減少,極大值與極小值包絡線逐漸匯聚成一條曲線,該方法就不再適用。因此,包絡法適用于膜層較厚且弱吸收的樣品。廣西高速膜厚儀