白光干涉光譜分析是目前白光干涉測量的一個重要方向。此項技術通過使用光譜儀將對條紋的測量轉變?yōu)閷Σ煌ㄩL光譜的測量,分析被測物體的光譜特性,得到相應的長度信息和形貌信息。與白光掃描干涉術相比,它不需要大量的掃描過程,因此提高了測量效率,并減小了環(huán)境對其影響。此項技術能夠測量距離、位移、塊狀材料的群折射率以及多層薄膜厚度等。白光干涉光譜分析基于頻域干涉的理論,采用白光作為寬波段光源,經(jīng)過分光棱鏡折射為兩束光。這兩束光分別經(jīng)由參考面和被測物體入射,反射后再次匯聚合成,并由色散元件分光至探測器,記錄頻域干涉信號。這個光譜信號包含了被測表面信息,如果此時被測物體是薄膜,則薄膜的厚度也包含在光譜信號當中。白光干涉光譜分析將白光干涉和光譜測量的速度結合起來,形成了一種精度高且速度快的測量方法。該儀器的使用需要一定的專業(yè)技能和經(jīng)驗,操作前需要進行充分的培訓和實踐。原裝膜厚儀哪個品牌好
白光干涉頻域解調顧名思義是在頻域分析解調信號,測量裝置與時域解調裝置幾乎相同,只需把光強測量裝置換為CCD或者是光譜儀,接收到的信號是光強隨著光波長的分布。由于時域解調中接收到的信號是一定范圍內(nèi)所有波長的光強疊加,因此將頻譜信號中各個波長的光強疊加,即可得到與它對應的時域接收信號。由此可見,頻域的白光干涉條紋不僅包含了時域白光干涉條紋的所有信息,還包含了時域干涉條紋中沒有的波長信息。在頻域干涉中,當兩束相干光的光程差遠大于光源的相干長度時,仍可以在光譜儀上觀察到頻域干涉條紋。這是由于光譜儀內(nèi)部的光柵具有分光作用,能夠將寬譜光變成窄帶光譜,從而增加了光譜的相干長度。這一解調技術的優(yōu)點就是在整個測量系統(tǒng)中沒有使用機械掃描部件,從而在測量的穩(wěn)定性和可靠性上得到很大的提高。常見的頻域解調方法有峰峰值檢測法、傅里葉解調法以及傅里葉變換白光干涉解調法等。蘇州膜厚儀測量儀白光干涉膜厚儀需要進行校準和選擇合適的標準樣品,以保證測量結果的準確性。
在激光慣性約束核聚變實驗中,靶丸的物性參數(shù)和幾何參數(shù)對靶丸制備工藝改進和仿真模擬核聚變實驗過程至關重要。然而,如何對靶丸多個參數(shù)進行同步、高精度、無損的綜合檢測是激光慣性約束核聚變實驗中的關鍵問題。雖然已有多種薄膜厚度及折射率的測量方法,但仍然無法滿足激光核聚變技術對靶丸參數(shù)測量的高要求。此外,靶丸的參數(shù)測量存在以下問題:不能對靶丸進行破壞性切割測量,否則被破壞的靶丸無法用于后續(xù)工藝處理或打靶實驗;需要同時測得靶丸的多個參數(shù),因為不同參數(shù)的單獨測量無法提供靶丸制備和核聚變反應過程中發(fā)生的結構變化的現(xiàn)象和規(guī)律,并且效率低下、沒有統(tǒng)一的測量標準。由于靶丸屬于自支撐球形薄膜結構,曲面應力大、難以展平,因此靶丸與基底不能完全貼合,可在微觀區(qū)域內(nèi)視作類薄膜結構。
薄膜干涉原理根據(jù)薄膜干涉原理…,當波長為^的單色光以人射角f從折射率為n.的介質入射到折射率為n:、厚度為e的介質膜面(見圖1)時,干涉明、暗紋條件為:
2e(n22一n12sin2i)1/2+δ’=kλ,k=1,2,3,4,5...(1)
2e(n22一n12sin2i)1/2+δ’=(2k+1)λ/2,k=0,1,2,3,4...(2)
E式中k為干涉條紋級次;δ’為半波損失.
普通物理教材中討論薄膜干涉問題時,均近似地認為,δ’是指入射光波在光疏介質中前進,遇到光密介質i的界面時,在不超過臨界角的條件下,不論人射角的大小如何,在反射過程中都將產(chǎn)生半個波長的損失(嚴格地說, 只在掠射和正射情況下反射光的振動方向與入射光的振動方向才幾乎相反),故δ’是否存在決定于n1,n2,n3大小的比較。當膜厚e一定,而入射角j可變時,干涉條紋級次^隨f而變,即同樣的人射角‘對應同一級明紋(或暗紋),叫等傾干涉,如以不同的入射角入射到平板介質上.當入射角£一定,而膜厚。可變時,干涉條紋級次隨。而變,即同樣的膜厚e對應同一級明紋(或暗紋)。叫等厚干涉,如劈尖干涉和牛頓環(huán). 隨著技術的進步和應用領域的拓展,白光干涉膜厚儀的性能和功能將不斷提升和擴展。
由于不同性質和形態(tài)的薄膜對測量量程和精度的需求不相同,因此多種測量方法各有優(yōu)缺點,難以籠統(tǒng)評估。測量特點總結如表1-1所示,針對薄膜厚度不同,適用的測量方法分別為橢圓偏振法、分光光度法、共聚焦法和干涉法。對于小于1μm的薄膜,白光干涉輪廓儀的測量精度較低,分光光度法和橢圓偏振法較為適用;而對于小于200nm的薄膜,橢圓偏振法結果更可靠,因為透過率曲線缺少峰谷值。光學薄膜厚度測量方案目前主要集中于測量透明或半透明薄膜。通過使用不同的解調技術處理白光干涉的圖樣,可以得到待測薄膜厚度。本章詳細研究了白光干涉測量技術的常用解調方案、解調原理及其局限性,并得出了基于兩個相鄰干涉峰的白光干涉解調方案不適用于極短光程差測量的結論。在此基礎上,提出了一種基于干涉光譜單峰值波長移動的白光干涉測量解調技術。它可測量大氣壓下1納米到1毫米范圍內(nèi)的薄膜厚度。膜厚儀產(chǎn)品基本性能要求
膜厚儀的干涉測量能力較高,可以提供精確和可信的膜層厚度測量結果。原裝膜厚儀哪個品牌好
光具有傳播的特性,不同波列在相遇的區(qū)域,振動將相互疊加,是各列光波獨自在該點所引起的振動矢量和。兩束光要發(fā)生干涉,應必須滿足三個相干條件,即:頻率一致、振動方向一致、相位差恒定。發(fā)生干涉的兩束光在一些地方振動加強,而在另一些地方振動減弱,產(chǎn)生規(guī)則的明暗交替變化。任何干涉測量都是完全建立在這種光波典型特性上的。下圖分別表示干涉相長和干涉相消的合振幅。與激光光源相比,白光光源的相干長度在幾微米到幾十微米內(nèi),通常都很短,更為重要的是,白光光源產(chǎn)生的干涉條紋具有一個典型的特征:即條紋有一個固定不變的位置,該固定位置對應于光程差為零的平衡位置,并在該位置白光輸出光強度具有最大值,并通過探測該光強最大值,可實現(xiàn)樣品表面位移的精密測量。此外,白光光源具有系統(tǒng)抗干擾能力強、穩(wěn)定性好且動態(tài)范圍大、結構簡單,成本低廉等優(yōu)點。因此,白光垂直掃描干涉、白光反射光譜等基于白光干涉的光學測量技術在薄膜三維形貌測量、薄膜厚度精密測量等領域得以廣泛應用。原裝膜厚儀哪個品牌好