厚片吸塑在現(xiàn)代包裝中的重要性及應(yīng)用
壓縮機(jī)單層吸塑包裝:循環(huán)使用的創(chuàng)新解決方案
厚片吸塑產(chǎn)品選擇指南
厚片吸塑的類型、特點(diǎn)和優(yōu)勢(shì)
雙層吸塑圍板箱的優(yōu)勢(shì)及環(huán)保材料的可持續(xù)利用
厚片吸塑:革新包裝運(yùn)輸行業(yè)的效率與安全保障
選圍板箱品質(zhì)很重要——無(wú)錫鑫旺德行業(yè)品質(zhì)之選
雙層吸塑蓋子的創(chuàng)新應(yīng)用與優(yōu)勢(shì)解析
電機(jī)單層吸塑包裝的優(yōu)勢(shì)與應(yīng)用
雙層吸塑底托:提升貨物運(yùn)輸安全與效率的較佳選擇
基于表面等離子體共振傳感的測(cè)量方案 ,利用共振曲線的三個(gè)特征參量—共振角、半高寬和反射率小值,通過反演計(jì)算得到待測(cè)金屬薄膜的厚度。該測(cè)量方案可同時(shí)得到金屬薄膜的介電常數(shù)和厚度,操作方法簡(jiǎn)單。我們利用Kretschmann型結(jié)構(gòu)的表面等離子體共振實(shí)驗(yàn)系統(tǒng),測(cè)得金膜在入射光波長(zhǎng)分別為632.8nm和652.1nm時(shí)的共振曲線,由此得到金膜的厚度為55.2nm。由于該方案是一種強(qiáng)度測(cè)量方案,測(cè)量精度受環(huán)境影響較大,且測(cè)量結(jié)果存在多值性的問題,所以我們進(jìn)一步對(duì)偏振外差干涉的改進(jìn)方案進(jìn)行了理論分析,根據(jù)P光和S光之間相位差的變化實(shí)現(xiàn)厚度測(cè)量。白光干涉膜厚儀需要校準(zhǔn)。蘇州膜厚儀詳情
白光干涉頻域解調(diào)顧名思義是在頻域分析解調(diào)信號(hào) ,測(cè)量裝置與時(shí)域解調(diào)裝置幾乎相同,只需把光強(qiáng)測(cè)量裝置換為光譜儀或者是CCD ,接收到的信號(hào)是光強(qiáng)隨著光波長(zhǎng)的分布。由于時(shí)域解調(diào)中接收到的信號(hào)是一定范圍內(nèi)所有波長(zhǎng)的光強(qiáng)疊加,因此將頻譜信號(hào)中各個(gè)波長(zhǎng)的光強(qiáng)疊加,即可得到與它對(duì)應(yīng)的時(shí)域接收信號(hào)。由此可見,頻域的白光干涉條紋不僅包含了時(shí)域白光干涉條紋的所有信息,還包含了時(shí)域干涉條紋中沒有的波長(zhǎng)信息。在頻域干涉中,當(dāng)兩束相干光的光程差遠(yuǎn)大于光源的相干長(zhǎng)度時(shí),仍可以在光譜儀上觀察到頻域干涉條紋。這是由于光譜儀內(nèi)部的光柵具有分光作用,能夠?qū)捵V光變成窄帶光譜,從而增加了光譜的相干長(zhǎng)度。這一解調(diào)技術(shù)的優(yōu)點(diǎn)就是在整個(gè)測(cè)量系統(tǒng)中沒有使用機(jī)械掃描部件,從而在測(cè)量的穩(wěn)定性和可靠性上得到很大的提高。常見的頻域解調(diào)方法有峰峰值檢測(cè)法、傅里葉解調(diào)法以及傅里葉變換白光干涉解調(diào)法等。膜厚儀定做白光干涉膜厚測(cè)量技術(shù)可以對(duì)薄膜的厚度、反射率、折射率等光學(xué)參數(shù)進(jìn)行測(cè)量。
采用峰峰值法處理光譜數(shù)據(jù)時(shí) ,被測(cè)光程差的分辨率取決于光譜儀或CCD的分辨率。我們只需獲得相鄰的兩干涉峰值處的波長(zhǎng)信息即可得出光程差,不必關(guān)心此波長(zhǎng)處的光強(qiáng)大小,從而降低數(shù)據(jù)處理的難度。也可以利用多組相鄰的干涉光譜極值對(duì)應(yīng)的波長(zhǎng)來(lái)分別求出光程差,然后再求平均值作為測(cè)量光程差,這樣可以提高該方法的測(cè)量精度。但是,峰峰值法存在著一些缺點(diǎn):當(dāng)使用寬帶光源作為輸入光源時(shí),接收光譜中不可避免地疊加有與光源同分布的背景光,從而引起峰值處波長(zhǎng)的改變,引入測(cè)量誤差。同時(shí),當(dāng)兩干涉信號(hào)之間的光程差很小,導(dǎo)致其干涉光譜只有一個(gè)干涉峰的時(shí)候,此法便不再適用。
論文所研究的鍺膜厚度約300nm ,導(dǎo)致其白光干涉輸出光譜只有一個(gè)干涉峰,此時(shí)常規(guī)基于相鄰干涉峰間距解調(diào)的方案(如峰峰值法等)將不再適用。為此,我們提出了一種基于單峰值波長(zhǎng)移動(dòng)的白光干涉測(cè)量方案,并設(shè)計(jì)搭建了膜厚測(cè)量系統(tǒng)。溫度測(cè)量實(shí)驗(yàn)結(jié)果表明,峰值波長(zhǎng)與溫度變化之間具有良好的線性關(guān)系。利用該測(cè)量方案,我們測(cè)得實(shí)驗(yàn)用鍺膜的厚度為338.8nm,實(shí)驗(yàn)誤差主要來(lái)自于溫度控制誤差和光源波長(zhǎng)漂移。論文通過對(duì)納米級(jí)薄膜厚度的測(cè)量方案研究,實(shí)現(xiàn)了對(duì)鍺膜和金膜的厚度測(cè)量。論文主要的創(chuàng)新點(diǎn)是提出了白光干涉單峰值波長(zhǎng)移動(dòng)的解調(diào)方案,并將其應(yīng)用于極短光程差的測(cè)量??偟膩?lái)說(shuō),白光干涉膜厚儀是一種應(yīng)用很廣的測(cè)量薄膜厚度的儀器。
傅里葉變換是白光頻域解調(diào)方法中一種低精度的信號(hào)解調(diào)方法 。早是由G.F.Fernando和T.Liu等人提出,用于低精度光纖法布里-珀羅傳感器的解調(diào)。因此,該解調(diào)方案的原理是通過傅里葉變換得到頻域的峰值頻率從而獲得光程差,進(jìn)而得到待測(cè)物理量的信息。傅里葉變換解調(diào)方案的優(yōu)點(diǎn)是解調(diào)速度較快,受干擾信號(hào)的影響較小。但是其測(cè)量精度較低。根據(jù)數(shù)字信號(hào)處理FFT(快速傅里葉變換)理論,若輸入光源波長(zhǎng)范圍為[]λ1,λ2,則所測(cè)光程差的理論小分辨率為λ1λ2/(λ2?λ1),所以此方法主要應(yīng)用于對(duì)解調(diào)精度要求不高的場(chǎng)合。傅里葉變換白光干涉法是對(duì)傅里葉變換法的改進(jìn)。該方法總結(jié)起來(lái)就是對(duì)采集到的光譜信號(hào)做傅里葉變換,然后濾波、提取主頻信號(hào)后進(jìn)行逆傅里葉變換,然后做對(duì)數(shù)運(yùn)算,并取其虛部做相位反包裹運(yùn)算,由獲得的相位得到干涉儀的光程差。該方法經(jīng)過實(shí)驗(yàn)證明其測(cè)量精度比傅里葉變換高。隨著技術(shù)的不斷進(jìn)步和應(yīng)用領(lǐng)域的擴(kuò)展,白光干涉膜厚儀的性能和功能將得到進(jìn)一步提高。防水膜厚儀設(shè)備生產(chǎn)
可測(cè)量大氣壓下薄膜厚度在1納米到1毫米之間。蘇州膜厚儀詳情
在白光反射光譜探測(cè)模塊中,入射光經(jīng)過分光鏡1分光后 ,一部分光通過物鏡聚焦到靶丸表面 ,靶丸殼層上、下表面的反射光經(jīng)過物鏡、分光鏡1、聚焦透鏡、分光鏡2后,一部分光聚焦到光纖端面并到達(dá)光譜儀探測(cè)器,可實(shí)現(xiàn)靶丸殼層白光干涉光譜的測(cè)量,一部分光到達(dá)CCD探測(cè)器,可獲得靶丸表面的光學(xué)圖像。靶丸吸附轉(zhuǎn)位模塊和三維運(yùn)動(dòng)模塊分別用于靶丸的吸附定位以及靶丸特定角度轉(zhuǎn)位以及靶丸位置的輔助調(diào)整,測(cè)量過程中,將靶丸放置于軸系吸嘴前端,通過微型真空泵負(fù)壓吸附于吸嘴上;然后,移動(dòng)位移平臺(tái),將靶丸移動(dòng)至CCD視場(chǎng)中心,通過Z向位移臺(tái),使靶丸表面成像清晰;利用光譜儀探測(cè)靶丸殼層的白光反射光譜;靶丸在軸系的帶動(dòng)下,平穩(wěn)轉(zhuǎn)位到特定角度,由于軸系的回轉(zhuǎn)誤差,轉(zhuǎn)位后靶丸可能偏移CCD視場(chǎng)中心,此時(shí)可通過調(diào)整軸系前端的調(diào)心結(jié)構(gòu),使靶丸定點(diǎn)位于視場(chǎng)中心并采集其白光反射光譜;重復(fù)以上步驟,可實(shí)現(xiàn)靶丸特定位置或圓周輪廓白光反射光譜數(shù)據(jù)的測(cè)量。為減少外界干擾和震動(dòng)而引起的測(cè)量誤差,該裝置放置于氣浮平臺(tái)上,通過高性能的隔振效果可保證測(cè)量結(jié)果的穩(wěn)定性。蘇州膜厚儀詳情