核磁共振(NMR)基本原理: 帶自旋的原子核(1H) 1) 一個帶電的自旋體產生一環(huán)形電流。從而形成微觀磁場?自旋磁矩; 2) 自旋磁矩與一般的小磁鐵一樣具有南北極; 3) 在無外加磁場時。物質中的原子核磁場的指向是無規(guī)則分布的。宏觀磁矩M0為0宏觀磁矩M0的形成; 4) 置于靜磁場中原子核與磁場產生作用。沿著磁場方向定向排列。形成宏觀磁矩M0 NMR信號產生原理 1) 樣品進入檢測區(qū)域。樣品中中氫原子核的磁矩將沿著靜磁場方向排列并形成宏觀磁矩M0 2) 施加特定頻率激發(fā)脈沖。宏觀磁矩定向偏轉 3) 脈沖結束。宏觀磁矩定向恢復并產生核磁共振信號核磁共振是指具有固定磁距的原子核,在恒定磁場與交變磁場的作用下,與交變磁場發(fā)生能量交換的現(xiàn)象。湖南麥格瑞核磁共振產品介紹
核磁共振檢測技術特點 測量目標原子核的特一性 由于不同的原子核在相同的磁場強度下。有不同的進動頻率。所以我們在測量某一原子核的信號時。不會受到其他原子核的干擾。如在測量1H原子核時不會收到19F原子核的干擾。反之亦然。 通過T1、 T2的測量,實現(xiàn)不同樣品的組分分析。 弛豫時間T1、 T2由樣品性質決定。包括樣品中原子核所處物理化學環(huán)境、細胞環(huán)境、樣品中原子核數(shù)目、樣品的相態(tài)等。因此,分析樣品中目標原子核的T1、 T2值??蓪崿F(xiàn)研究樣品的物理和化學性質。 優(yōu)點: 直接測量,無需任何處理。 樣品無損傷分析,可進行重復測量。 環(huán)保、無毒、無任何副作用。江蘇麥格瑞核磁共振分析核磁共振弛豫信號的數(shù)學模型仍然是基于1946年Bloch提出的弛豫理論建立的模型。
射頻探頭是低場核磁共振弛豫分析儀的關鍵部件之一。它主要完成向靜磁場中的樣品發(fā)射脈沖電磁場以激發(fā)原子核的磁共振。以及檢測核磁共振信號。射頻探頭主要由射頻線圈和調諧匹配電路組成。 射頻線圈設計的極主要目標是提高信噪比。常見的射頻線圈有螺線管線圈和平面線圈。 調諧匹配電路用于將核磁共振探頭的阻抗調制到50 歐姆。實現(xiàn)極大化的能量傳輸。目前常用的電路主要為 LC 振蕩電路。 在低場核磁共振弛豫分析儀器的探頭中。主要根據(jù)磁體的類型決定所使 用探頭的線圈類型。根據(jù)檢測對象弛豫信號的特征設計合適的調諧匹配電路。
核磁共振技術是一項復雜而強大的分析技術,在各行各業(yè)都得到了應用。核磁共振弛豫分析技術作為核磁共振技術的一個分支,可以獲得物質中與分子動力學特性相關的弛豫信號,從而實現(xiàn)物體中物質的高靈敏度鑒別與定量分析,在食品衛(wèi)生、建材和生命科學等領域都有著重要的應用。據(jù)應用范圍和對核磁共振信號分析角度的不同,核磁共振技術主要分為三個分支,包括核磁共振波譜技術、核磁共振成像技術和核磁共振弛豫分析技術。 核磁共振波譜技術利用樣品中原子核吸收能量頻率的差異來識別分子中的功能團,從而實現(xiàn)分子結構的分析。 核磁共振成像技術利用空間編碼技術,根據(jù)物體內部特定原子核的密度或弛豫特性實現(xiàn)該物體內部結構的成像。 而核磁共振弛豫分析技術則根據(jù)物體內部不同物質的弛豫特性實現(xiàn)物質組分的鑒別和定量分析。核磁共振技術主要分為三個分支:包括核磁共振波譜技術、核磁共振成像技術和核磁共振弛豫分析技術。
低場核磁共振探頭設置 儀器的探頭參數(shù)與當前儀器的硬件配置和儀器所處環(huán)境有關。當用戶更換儀器探頭部件后。為保證儀器能夠精確測量。必須要重新進行探頭參數(shù)設置。即探頭參數(shù)的初始化。探頭設置主要包括當前探頭配置信息查看、探頭配置更換、探頭參數(shù)校正等功能。 核磁共振數(shù)據(jù)采集 核磁共振數(shù)據(jù)的采集由執(zhí)行選定的脈沖序列實現(xiàn)。對于弛豫特性未知的樣品。通常需要反復調整脈沖序列的參數(shù)。極終才能獲取滿意的核磁共振弛豫數(shù)據(jù)。其數(shù)據(jù)采集過程如下圖所示。低場核磁共振弛豫分析儀軟件用在儀器的微處理器上的下位機部分,實現(xiàn)硬件相關的重要功能。江蘇麥格瑞核磁共振分析
低場核磁共振具有測試速度快、靈敏度高、無損、綠色等優(yōu)點,廣泛應用在種子篩選、石油勘探、生命科學領域。湖南麥格瑞核磁共振產品介紹
脈沖序列是核磁共振系統(tǒng)中極簡單的脈沖序列,通過單脈沖序列獲得的自由感應衰減信號是核磁共振中的基礎弛豫信號,基礎信號中包含了核磁共振系統(tǒng)中拉莫爾頻率、信號強度、有效橫向弛豫時間等基本信息。 獲得 FID 信號的單脈沖實驗是核磁共振系統(tǒng)中極簡單、極基本的實驗。從時間上可以將單脈沖實驗分為四個階段:實驗準備階段、脈沖發(fā)射階段、等待階段以及信號接收階段: (1)在實驗準備階段,主要完成射頻源相位的重置和等待樣品磁矩的建立,確保每次掃描都能在相同的狀態(tài)和條件下進行。 (2)在射頻脈沖發(fā)射階段,主要完成射頻脈沖的發(fā)射。 (3)在等待階段,主要等待射頻脈沖衰減到足夠小,使得射頻脈沖信號不會影響接收器的信號采集。 (4)在信號接收階段,主要完成模擬信號到數(shù)字信號的轉換。湖南麥格瑞核磁共振產品介紹