膜片鉗技術是神經科學領域非常重要的一項技術,1976年由國馬普生物物理研究所Neher和Sakmann發(fā)明,從而在活細胞上記錄到單個離子通道的電流。近半個世紀來,膜片鉗技術已經成為神經科學領域較常用也是較實用的技術之一,具有極大的精確性和靈活性,能夠揭示離子通道,單細胞突觸反應,及神經環(huán)路連接等多層次的電生理特性。做過膜片鉗的人都知道,膜片鉗的信號采集設備一般由前置放大器,放大器,模數(shù)/數(shù)模轉換器等構成,神經元電信號先通過前置放大器(headstage)初步放大,后傳輸入放大器進一步放大,再傳入模數(shù)轉換器轉化為數(shù)字信號,后被計算機采集。下圖顯示的是我們較常使用的AXON和HEKA膜片鉗的一個信號傳輸路徑。膜電位Vm由高輸入阻抗的電壓跟隨器所測量。德國膜片鉗電壓鉗制
光遺傳學調控技術是近幾年正在迅速發(fā)展的一項整合了光學、基因操作技術、電生理等多學科交叉的生物技術。NatureMethods雜志將此技術評為"Methodoftheyear2010"[19];美國麻省理工學院科技評述(MITTechnologyReview,2010)在其總結性文章"Theyearinbiomedicine"中指出:光遺傳學調控技術現(xiàn)已經迅速成為生命科學,特別是神經和心臟研究領域中熱門的研究方向之一。目前這一技術正在被全球幾百家從事心臟學、神經科學和神經工程研究的實驗室使用,幫助科學家們深入理解大腦的功能,進而為深刻認識神經、精神疾病、心血管疾病的發(fā)病機理并研發(fā)針對疾病干預和的新技術。進口細胞膜片鉗產品介紹細胞膜由脂類雙分子層和和蛋白質構成。
不同的全自動膜片鉗技術所采用的原理如PopulationPatchClamp技術∶同SealChip技術一樣,完全摒齊了玻璃電極,而是采用PatchPlate平面電極芯片。該芯片含有多個小室,每個小室中含有很多1-2μm的封接孔。在記錄時,每個小室中封接成功的細胞|數(shù)目較多,獲得的記錄是這些細胞通道電流的平均值。因此,不同小室其通道電流的一致性非常好,變異系數(shù)很小。美國Axon(MDS)公司采用這一技術研發(fā)出了全自動高通量的lonWorksQuattro系統(tǒng),成為藥物初期篩選的金標準
膜片鉗技術∶從一小片(約幾平方微米)膜獲取電子學方面信息的技術,即保持跨膜電壓恒定——電壓鉗位,從而測量通過膜離子電流大小的技術。通過研究離子通道的離子流,從而了解離子運輸、信號傳遞等信息?;驹恚豪秘摲答侂娮泳€路,將微電極前列所吸附的一個至幾個平方微米的細胞膜的電位固定在一定水平上,對通過通道的微小離子電流作動態(tài)或靜態(tài)觀察,從而研究其功能。研究離子通道的一種電生理技術,是施加負壓將玻璃微電極的前列(開口直徑約1μm)與細胞膜緊密接觸,形成高阻抗封接,可以精確記錄離子通道微小電流。能制備成細胞貼附、內面朝外和外面朝內三種單通道記錄方式,以及另一種記錄多通道的全細胞方式。膜片鉗技術實現(xiàn)了小片膜的孤立和高阻封接的形成,由于高阻封接使背景噪聲水平**降低,相對地增寬了記錄頻帶范圍,提高了分辨率。另外,它還具有良好的機械穩(wěn)定性和化學絕緣性。而小片膜的孤立使對單個離子通道進行研究成為可能。對離子通道功能的研究,主要采用記錄離子通道電流來間接反映離子通道功能。
對電極持續(xù)施加一個1mV、10~50ms的階躍脈沖刺激,電極入水后電阻約4~6MΩ,此時在計算機屏幕顯示框中可看到測試脈沖產生的電流波形。開始時增益不宜設得太高,一般可在1~5mV/pA,以免放大器飽和。由于細胞外液與電極內液之間離子成分的差異造成了液結電位,故一般電極剛入水時測試波形基線并不在零線上,須首先將保持電壓設置為0mV,并調節(jié)“電極失調控制“使電極直流電流接近于零。用微操縱器使電極靠近細胞,當電極前列與細胞膜接觸時封接電阻指示Rm會有所上升,將電極稍向下壓,Rm指示會進一步上升。通過細塑料管向電極內稍加負壓,細胞膜特性良好時,Rm一般會在1min內快速上升,直至形成GΩ級的高阻抗封接。一般當Rm達到100MΩ左右時,電極前列施加輕微負電壓(-30~-10mV)有助于GΩ封接的形成。此時的現(xiàn)象是電流波形再次變得平坦,使電極超極化由-40到-90mV,有助于加速形成封接。為證實GΩ封接的形成,可以增加放大器的增益,從而可以觀察到除脈沖電壓的首尾兩端出現(xiàn)電容性脈沖前列電流之外,電流波形仍呈平坦狀。脂質層電導很低,由于雙分子層的結構特點,形成了細胞的膜電容,通道蛋白開閉狀況主要決定了膜電導的數(shù)值。進口雙分子層膜片鉗解決方案
全自動膜片鉗技術的出現(xiàn)標志著膜片鉗技術已經發(fā)展到了一個嶄新階段。德國膜片鉗電壓鉗制
膜片鉗技術原理:膜片鉗技術是用玻璃微電極吸管把只含1-3個離子通道、面積為幾個平方微米的細胞膜通過負壓吸引封接起來(見右圖),由于電極前列與細胞膜的高阻封接,在電極前列籠罩下的那片膜事實上與膜的其他部分從電學上隔離,因此,此片膜內開放所產生的電流流進玻璃吸管,用一個極為敏感的電流監(jiān)視器(膜片鉗放大器)測量此電流強度,就單一離子通道電流膜片鉗技術的建立,對生物學科學特別是神經科學是一資有重大意義的變革。這是一種以記錄通過離子通道的離子電流來反映細胞膜單一的(或多個的離子通道分子活動的技術。些技術的出現(xiàn)自然將細胞水平和分子水平的生理學研究聯(lián)系在一起,同時又將神經科學的不同分野必然地融匯在一起,改變了既往各個分野互不聯(lián)系、互不滲透,阻礙人們較全認識能力的弊端。這一技術的發(fā)現(xiàn)和基因克隆技術并架齊驅,給生命科學研究帶來了巨大的前進動力。德國膜片鉗電壓鉗制
因斯蔻浦(上海)生物科技有限公司位于中山北路1759號浦發(fā)廣場D座803,交通便利,環(huán)境優(yōu)美,是一家服務型企業(yè)。是一家有限責任公司(自然)企業(yè),隨著市場的發(fā)展和生產的需求,與多家企業(yè)合作研究,在原有產品的基礎上經過不斷改進,追求新型,在強化內部管理,完善結構調整的同時,良好的質量、合理的價格、完善的服務,在業(yè)界受到寬泛好評。公司擁有專業(yè)的技術團隊,具有nVista,nVoke,3D bioplotte,invivo等多項業(yè)務。滔博生物以創(chuàng)造***產品及服務的理念,打造高指標的服務,引導行業(yè)的發(fā)展。