SternandJeanMarx在評(píng)論中說(shuō):祖家能夠在更為精細(xì)的層次研究樹(shù)突的功能,這在以前是完全不可能的。新的技術(shù)(如腦片的膜片鉗和雙光子顯微使人們對(duì)樹(shù)突的計(jì)算和神經(jīng)信號(hào)處理中的作用有了更好的理解。他們解釋了是樹(shù)突模式和形狀多樣性,及其獨(dú)特的電、及其獨(dú)特的電化學(xué)特征使神經(jīng)元完成了一系列的專門(mén)任務(wù)。雙光子與共聚焦在發(fā)育生物學(xué)中的應(yīng)用雙光子∶每2.5分鐘掃描一次,觀察24小時(shí),發(fā)育到桑椹胚和胚泡階段共聚焦∶每15分鐘掃描一次,觀察8小時(shí)后細(xì)胞分裂停止,不能發(fā)育到桑椹胚和胚泡階段共聚焦激發(fā)時(shí)的細(xì)胞存活率為多光子系統(tǒng)的10~20%。多光子顯微鏡,為材料科學(xué)研究和工業(yè)應(yīng)用提供全新視角。美國(guó)全自動(dòng)多光子顯微鏡價(jià)格
現(xiàn)代分子生物學(xué)技術(shù)的迅速發(fā)展和科技的進(jìn)步,特別是隨著后基因組時(shí)代的到來(lái),人們已經(jīng)能夠根據(jù)需要建立各種細(xì)胞模型,為在體研究基因表達(dá)規(guī)律、分子間的相互作用、細(xì)胞的增殖、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、誘導(dǎo)分化、細(xì)胞凋亡以及新的血管生成等提供了良好的生物學(xué)條件。然而,盡管人們利用現(xiàn)有的分子生物學(xué)方法,已經(jīng)對(duì)基因表達(dá)和蛋白質(zhì)之間的相互作用進(jìn)行了深入、細(xì)致的研究,但仍然不能實(shí)現(xiàn)對(duì)蛋白質(zhì)和基因活動(dòng)的實(shí)時(shí)、動(dòng)態(tài)監(jiān)測(cè)。在細(xì)胞的生理過(guò)程中,基因、尤其是蛋白質(zhì)的表達(dá)、修飾和相萬(wàn)作用往往發(fā)生可逆的、動(dòng)態(tài)的變化。目前的分子生物學(xué)方法還不能捕獲到蛋白質(zhì)和基因的這些變化,但獲取這些信息對(duì)與研究基因的表達(dá)和蛋白質(zhì)之間的相互作用又至關(guān)重要。因此,發(fā)展能用于、動(dòng)態(tài)、實(shí)時(shí)、連續(xù)監(jiān)測(cè)蛋白質(zhì)和基因活動(dòng)的方法是非常有必要的。美國(guó)布魯克多光子顯微鏡數(shù)據(jù)處理多光子顯微鏡,為疾病診斷和藥物研發(fā)提供強(qiáng)大支持。
多光子顯微鏡通過(guò)引入具有超高透射率、非常陡峭的邊緣和精心優(yōu)化的阻擋的濾光片,為多光子用戶帶來(lái)了增強(qiáng)的性能。考慮到激發(fā)激光器和多光子成像系統(tǒng)的其他復(fù)雜元件通常需要多少投資,這些新的光學(xué)濾光片**了一種簡(jiǎn)單且廉價(jià)的升級(jí),可以顯著提高系統(tǒng)性能。事實(shí)上,與傳統(tǒng)濾光片的褐**調(diào)相比,發(fā)射濾光片看起來(lái)像窗戶玻璃一樣清晰,而且LWP二向色鏡具有如此寬的反射帶,它們看起來(lái)像高反射鏡。發(fā)射濾光片還在Ti:Sapphire激光調(diào)諧范圍內(nèi)提供深度阻擋,這對(duì)于實(shí)現(xiàn)高信噪比和測(cè)量靈敏度至關(guān)重要。
在多光子顯微鏡(也稱為非線性或雙光子顯微鏡)中,以兩倍正常激發(fā)波長(zhǎng)照射樣品。更長(zhǎng)的波長(zhǎng)是有利的,因?yàn)樗鼈兛梢愿畹卮┩笜悠愤M(jìn)行3D成像,并且因?yàn)樗鼈儾粫?huì)損壞樣品,從而延長(zhǎng)樣品壽命。為了實(shí)現(xiàn)多光子激發(fā),照明光束在空間上聚焦(使用光學(xué)器件),同時(shí)使用高能短脈沖激發(fā)光束以提高兩個(gè)(或更多)光子同時(shí)到達(dá)同一位置(即熒光團(tuán)分子)的概率。多光子顯微技術(shù)的例子包括二次諧波產(chǎn)生(SHG)、三次諧波產(chǎn)生(THG)、相干反斯托克斯拉曼光譜(CARS)和受激發(fā)射耗盡(STED)顯微技術(shù)。由于這些技術(shù)中的每一種都使用脈沖激光器,因此選擇能夠比較大限度地減少脈沖色散的光學(xué)組件很重要,并且激光反射二向色鏡應(yīng)具有低GDD特性。由于其非侵入性和高分辨率的特點(diǎn),多光子顯微鏡在神經(jīng)科學(xué)、ai癥研究、免疫學(xué)等領(lǐng)域發(fā)揮了重要作用。
多束掃描技術(shù)可以同時(shí)對(duì)神經(jīng)元組織的不同位置進(jìn)行成像對(duì)兩個(gè)遠(yuǎn)距離(相距大于1-2mm)的成像部位,通常使用兩條單獨(dú)的路徑進(jìn)行成像;對(duì)于相鄰區(qū)域,通常使用單個(gè)物鏡的多光束進(jìn)行成像。多光束掃描技術(shù)必須特別注意激發(fā)光束之間的串?dāng)_問(wèn)題,這個(gè)問(wèn)題可以通過(guò)事后光源分離方法或時(shí)空復(fù)用方法來(lái)解決。事后光源分離方法指的是用算法來(lái)分離光束消除串?dāng)_;時(shí)空復(fù)用方法指的是同時(shí)使用多個(gè)激發(fā)光束,每個(gè)光束的脈沖在時(shí)間上延遲,這樣就可以暫時(shí)分離被不同光束激發(fā)的單個(gè)熒光信號(hào)。引入越多路光束就可以對(duì)越多的神經(jīng)元進(jìn)行成像,但是多路光束會(huì)導(dǎo)致熒光衰減時(shí)間的重疊增加,從而限制了區(qū)分信號(hào)源的能力;并且多路復(fù)用對(duì)電子設(shè)備的工作速率有很高的要求;大量的光束也需要更高的激光功率來(lái)維持近似單光束的信噪比,這會(huì)容易導(dǎo)致組織損傷。多光子顯微鏡是一種用于生物學(xué)領(lǐng)域的分析儀器。共聚焦多光子顯微鏡單分子成像定位
多光子顯微鏡的發(fā)展歷史充滿了貢獻(xiàn)、開(kāi)發(fā)、進(jìn)步和數(shù)個(gè)世紀(jì)以來(lái)多個(gè)來(lái)源和地點(diǎn)的改進(jìn)。美國(guó)全自動(dòng)多光子顯微鏡價(jià)格
比較兩表格中的相關(guān)參數(shù)可以看出,基于分子光學(xué)標(biāo)記的成像技術(shù)已經(jīng)在生物活檢和基因表達(dá)規(guī)律方面展示了較大的優(yōu)勢(shì)。例如,正電子發(fā)射斷層成像(PET)可實(shí)現(xiàn)對(duì)分子代謝的成像,空間分辨率∶1-2mm,時(shí)間分辨率;分鐘量級(jí)。與PET比較,光學(xué)成像的應(yīng)用場(chǎng)合更廣(可測(cè)量更多的參數(shù),請(qǐng)參見(jiàn)表1-1),且具有更高的時(shí)間分辨率(秒級(jí)),空間分辨率可達(dá)到微米。因此,二者相比,雖然光學(xué)成像在測(cè)量深度方面不及PET,但在測(cè)量參數(shù)種類與時(shí)空分辨率方面有一定優(yōu)勢(shì)。對(duì)于小動(dòng)物(如小白鼠)研究來(lái)說(shuō),光學(xué)成像技術(shù)可以實(shí)現(xiàn)小動(dòng)物整體成像和在體基因表達(dá)成像。例如,初步研究表明,熒光介導(dǎo)層析成像可達(dá)到近10cm的測(cè)量深度;基于多光子激發(fā)的顯微成像技術(shù)可望實(shí)現(xiàn)小鼠體內(nèi)基因表達(dá)的實(shí)時(shí)在體成像。美國(guó)全自動(dòng)多光子顯微鏡價(jià)格