首代小型化雙光子顯微鏡在國際上獲得小鼠自由行為過程中大腦神經(jīng)元和突觸的動態(tài)圖像后,我們成功研制了第二代小型化雙光子顯微鏡。它具有更大的成像視野和三維成像能力,可以清晰穩(wěn)定地對自由活動小鼠三維腦區(qū)的數(shù)千個神經(jīng)元進(jìn)行成像,實現(xiàn)對同一批神經(jīng)元的一個月追蹤記錄。通過對微光學(xué)系統(tǒng)的重新設(shè)計系統(tǒng)的。微物鏡工作距離延長至1mm,實現(xiàn)無創(chuàng)成像。內(nèi)嵌可拆卸的快速軸向掃描模塊,可采集深度180微米的3D體成像和多平面快速切換的實時成像。該掃描模塊由一個快速的電動變焦透鏡和一對中繼透鏡組成,在不同深度成像時可保持放大倍率恒定。其變焦模塊重量,研究人員可根據(jù)實驗需求自由拆卸。此外,新版微型化成像探頭可整體即時拔插,極大地簡化了實驗操作,避免了長周期實驗時對動物的干擾。在重復(fù)裝卸探頭同一批神經(jīng)元時,視場旋轉(zhuǎn)角小于,邊界偏差小于35微米。多光子顯微鏡銷售渠道分析及建議。布魯克多光子顯微鏡多光子激發(fā)
細(xì)胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續(xù)存在,Ca2+熒光信號不但不會繼續(xù)增強(qiáng),反而會減弱,直至恢復(fù)到未加刺激物時的水平。對于細(xì)胞受精過程中Ca2+熒光信號的變化情況,研究發(fā)現(xiàn),配了在粘著過程中,Ca2+熒光信號未發(fā)生任何變化,而配子之間發(fā)生融合作用時,Ca2+熒光信號強(qiáng)度卻會出現(xiàn)一個不穩(wěn)定的峰值,并可持續(xù)幾分鐘。這些現(xiàn)象,對研究受精發(fā)育的早期信號及Ca2+在卵細(xì)胞和受精卵的發(fā)育過程中的作用具有重要的意義。在其它一些生理過程如細(xì)胞分裂、胞吐作用等,Ca2+熒光信號強(qiáng)度也會發(fā)生很的變化。布魯克多光子顯微鏡多光子激發(fā)雙光子顯微鏡采用長波長激發(fā)。
快速光柵掃描有多種實現(xiàn)方式,使用振鏡進(jìn)行快速2D掃描,將振鏡和可調(diào)電動透鏡結(jié)合在一起進(jìn)行快速3D掃描,但可調(diào)電動透鏡由于機(jī)械慣性的限制在軸向無法快速進(jìn)行焦點切換,影響成像速度,現(xiàn)可使用空間光調(diào)制器(SLM)代替。遠(yuǎn)程聚焦也是一種實現(xiàn)3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進(jìn)行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調(diào)控M的位置實現(xiàn)軸向掃描。該技術(shù)不僅可以校正主物鏡L2引入的光學(xué)像差,還可以進(jìn)行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過調(diào)整顯微鏡的物鏡設(shè)計來擴(kuò)大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進(jìn)行快速軸向掃描,因此大型FOV系統(tǒng)需要依賴于遠(yuǎn)程聚焦、SLM和可調(diào)電動透鏡。
多光子顯微鏡通過引入具有超高透射率、非常陡峭的邊緣和精心優(yōu)化的阻擋的濾光片,為多光子用戶帶來了增強(qiáng)的性能。考慮到激發(fā)激光器和多光子成像系統(tǒng)的其他復(fù)雜元件通常需要多少投資,這些新的光學(xué)濾光片**了一種簡單且廉價的升級,可以顯著提高系統(tǒng)性能。事實上,與傳統(tǒng)濾光片的褐**調(diào)相比,發(fā)射濾光片看起來像窗戶玻璃一樣清晰,而且LWP二向色鏡具有如此寬的反射帶,它們看起來像高反射鏡。發(fā)射濾光片還在Ti:Sapphire激光調(diào)諧范圍內(nèi)提供深度阻擋,這對于實現(xiàn)高信噪比和測量靈敏度至關(guān)重要。顯微鏡產(chǎn)品正拉動市場需求,多光子顯微鏡市場發(fā)展?jié)摿薮蟆?/p>
快速光柵掃描有多種實現(xiàn)方式,使用振鏡進(jìn)行快速2D掃描,將振鏡和可調(diào)電動透鏡結(jié)合在一起進(jìn)行快速3D掃描,但可調(diào)電動透鏡由于機(jī)械慣性的限制在軸向無法快速進(jìn)行焦點切換,影響成像速度,現(xiàn)可使用空間光調(diào)制器(SLM)代替。遠(yuǎn)程聚焦也是一種實現(xiàn)3D成像的手段。在LSU模塊中,掃描振鏡進(jìn)行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調(diào)控M的位置實現(xiàn)軸向掃描。該技術(shù)不僅可以校正主物鏡L2引入的光學(xué)像差,還可以進(jìn)行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過調(diào)整顯微鏡的物鏡設(shè)計來擴(kuò)大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進(jìn)行快速軸向掃描,因此大型FOV系統(tǒng)依賴于遠(yuǎn)程聚焦、SLM和可調(diào)電動透鏡。目前主要使用的多光子顯微鏡包括雙光子顯微鏡和三光子顯微鏡。離體多光子顯微鏡峰值功率密度
多光子顯微鏡的大多數(shù)補(bǔ)償器都采用棱鏡。布魯克多光子顯微鏡多光子激發(fā)
現(xiàn)代分子生物學(xué)技術(shù)的迅速發(fā)展和科技的進(jìn)步,特別是隨著后基因組時代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細(xì)胞模型,為在體研究基因表達(dá)規(guī)律、分子間的相互作用、細(xì)胞的增殖、細(xì)胞信號轉(zhuǎn)導(dǎo)、誘導(dǎo)分化、細(xì)胞凋亡以及新的血管生成等提供了良好的生物學(xué)條件。然而,盡管人們利用現(xiàn)有的分子生物學(xué)方法,已經(jīng)對基因表達(dá)和蛋白質(zhì)之間的相互作用進(jìn)行了深入、細(xì)致的研究,但仍然不能實現(xiàn)對蛋白質(zhì)和基因活動的實時、動態(tài)監(jiān)測。在細(xì)胞的生理過程中,基因、尤其是蛋白質(zhì)的表達(dá)、修飾和相萬作用往往發(fā)生可逆的、動態(tài)的變化。目前的分子生物學(xué)方法還不能捕獲到蛋白質(zhì)和基因的這些變化,但獲取這些信息對與研究基因的表達(dá)和蛋白質(zhì)之間的相互作用又至關(guān)重要。因此,發(fā)展能用于、動態(tài)、實時、連續(xù)監(jiān)測蛋白質(zhì)和基因活動的方法非常必要。布魯克多光子顯微鏡多光子激發(fā)