我國家的機動車數(shù)量龐大,但是停車位的建設卻沒有很好的跟上節(jié)奏,這也就導致許多車在出行時找不到停車位,車主也就不得不臨時將車停放在路邊。隨著路邊停放車輛的不斷增多,原本寬敞的道路也就變得狹窄,嚴重時甚至會堵得水泄不通。此外,一些大車由于阻擋視野,還容易造成“鬼探頭”等事故。通常情況下,交管部門會利用路邊的抓拍設備進行違停抓拍或者巡邏車進行巡邏,但是從實際效果來看,作用并不明顯。于是,無人機被派上用場。利用深度學習能夠讓AI更加聰明。智慧消防AI智能人臉識別
部署機器學習模型,也稱為模型部署,簡單來說就是將機器學習模型集成到現(xiàn)有的生產(chǎn)環(huán)境中,在該環(huán)境中,模型可以接受輸入并返回輸出。部署模型的目的是讓其他人(無論是用戶、管理人員還是其他系統(tǒng))可以使用訓練有素的機器學習模型進行預測。模型部署與機器學習系統(tǒng)架構密切相關,機器學習系統(tǒng)架構是指系統(tǒng)內(nèi)軟件組件的排列和交互,以實現(xiàn)預定義的目標。成都慧視推出的AI自動圖像標注軟件SpeedDP也是這樣,通過正確的模型部署后方能進行正確的AI模型訓練,讓AI更加智能。云南智慧交通AI智能圖像處理板人工智能是一個寬泛的概念,它賦予機器模仿人類行為的能力。
巡檢機器人能夠?qū)崿F(xiàn)抵近待測設備,進行精細的測溫、測量以及感應。同時具備自主導航、實時避障功能,能夠智能規(guī)劃比較好巡檢路徑、規(guī)避站內(nèi)檢修區(qū)域,效率是人工的好幾倍,并且還不會出現(xiàn)傳統(tǒng)人工巡檢造成人身危害等行為。這種機器人搭載的圖像處理板可以自由選擇,例如成都慧視開發(fā)的Viztra-HE030圖像處理板,就可以很好的應用在電力巡檢領域,這塊板卡采用了瑞芯微全新一代旗艦芯片RK3588,采用8nmLP制程,四大四小八核處理器;搭載八核64位CPU,主頻高達2.4GHz;集成ARMMali-G610MP4四核GPU,內(nèi)置AI加速器NPU,算力高達6.0TOPS。用在電力巡檢領域完全可以滿足需求,并且成都慧視可以根據(jù)使用場景進行外殼的特殊化定制,有效處理散熱防水,為機器人的戶外工作提供更加穩(wěn)定的處理能力。
YOLO(You Only Look Once)是一種目標檢測算法,它使用深度神經(jīng)網(wǎng)絡模型,特別是卷積神經(jīng)網(wǎng)絡,來實時檢測和分類對象。該算法開始被提出是在2016年的論文《You Only Look Once:統(tǒng)一的實時目標檢測》中。自發(fā)布以來,由于其高準確性和速度,YOLO已成為目標檢測和分類任務中很受歡迎的算法之一。它在各種目標檢測基準測試中實現(xiàn)了高性能。就在2023年5月初,YOLO-NAS模型被引入到機器學習領域,它擁有更高的精度和速度,超越了其他模型如YOLOv7和YOLOv8。SpeedDP整體安全性很高。
隨著技術的不斷迭代發(fā)展,人工智能應用已潛移默化的深入到人們的日常生活中,智能圖片搜索、人臉識別、指紋識別、掃碼支付、視覺工業(yè)機器人、輔助駕駛等圖像視頻識別產(chǎn)品正在深刻改變著傳統(tǒng)行業(yè)。而這些功能實現(xiàn)的背后,都要依賴于人工智能數(shù)據(jù)的標注。但是如果遇到數(shù)據(jù)量龐大的標注需求,傳統(tǒng)的人工標注就顯得費時費力,會影響整個項目的進度。慧視SpeedDP是針對AI零基礎用戶的低門檻AI開發(fā)平臺,提供從數(shù)據(jù)標注、模型訓練、測試驗證到RockChip嵌入式硬件平臺模型部署的可視化AI開發(fā)功能。SpeedDP提供豐富的算法參數(shù)設置接口,滿足不同用戶業(yè)務場景的定制化需求。此外,慧視SpeedDP開發(fā)平臺支持本地化服務器部署,數(shù)據(jù)敏感的用戶也無需擔心數(shù)據(jù)信息泄露的問題。SpeedDP采用本地化服務器部署的方式。安徽研發(fā)AI智能算法
機器學習是使用算法來處理、學習和理解或預測可用數(shù)據(jù)的模式。智慧消防AI智能人臉識別
在進行目標識別跟蹤時,OSD字符能夠幫助使用者更加清晰的看到識別跟蹤的效果,OSD字符疊加是目標跟蹤領域一個重要的部分,它能夠?qū)⒏鞣N圖像文本添加到視頻當中,實現(xiàn)字符與視頻的疊加,進而輔助進行目標檢測、跟蹤的識別,便于觀察目標。經(jīng)過多年技術積累及更新迭代,以及客戶對OSD字符疊加的需求整理,我們將OSD拆分為多個組件,包括文字,角度顯示刻度線,矩形框,圓,多邊形,指北針等組件,可靈活設置位置、字號、顏色等屬性,為用戶定制OSD提供方便。智慧消防AI智能人臉識別