經(jīng)電感耦合等離子體光發(fā)射光譜分析測(cè)試(ICP-OES),LTO納米顆粒中Li和Ti的原子比例分別為4.64%和46.30%,即原子摩爾比為L(zhǎng)i/Ti=0.692,表明這是一種缺鋰富鈦型LTO。XPS表征結(jié)果表明Ti 2p峰分布在458.7 eV和464.4 eV兩處,說(shuō)明該LTO中只有四價(jià)鈦并不存在三價(jià)鈦。另外,鈦元素主要暴露在LTO納米顆粒表面,這主要是合成過(guò)程中有氧缺陷的存在造成的。顆粒表面Ti/O比一般的LTO低,而更類似于TiO2這樣一種組成。作者采用扣式電池體系Li/Li+/LTO(活性物質(zhì)負(fù)載量1mg/cm2),在1.3-2.5V的電壓范圍內(nèi)測(cè)試了LTO的電化學(xué)性能。醋酸鋰法更適合于產(chǎn)甘油假絲酵母的轉(zhuǎn)化。立體化無(wú)水醋酸鋰分解
Prof. Yingjie Zhu和Xianluo Hu合作[3],采用羥基磷灰石超長(zhǎng)納米線、科琴黑納米顆粒,碳纖維和磷酸鐵鋰粉末作為原料,通過(guò)簡(jiǎn)單的靜電輔助自組裝的方法成功的制備了一種既可以耐高溫、又具有活性物質(zhì)高負(fù)載量的新型磷酸鐵鋰復(fù)合電極(UCFR-LFP),可以作為鋰電池正極(圖1)。在自組裝和抽濾的過(guò)程中,磷酸鐵鋰納米顆粒均勻得分散在高導(dǎo)電性且多孔的羥基磷灰石超長(zhǎng)納米線/科琴黑納米顆粒/碳纖維基底中,從而形成自支撐、具有獨(dú)特復(fù)合多孔結(jié)構(gòu)的磷酸鐵鋰耐高溫正極材料,其具有優(yōu)異的熱穩(wěn)定性和耐火性,即使在1000℃的高溫下也能保持其電化學(xué)活性和結(jié)構(gòu)完整性。河南現(xiàn)代無(wú)水醋酸鋰醋酸鋰:醋酸乙烯與活性聚丁二烯基鋰反應(yīng)機(jī)理的探討。
在當(dāng)今能源制約、環(huán)境污染等大背景下,國(guó)家提出發(fā)展新能源作為改善環(huán)境、節(jié)約成本的重要舉措。其中,電動(dòng)汽車**近成為熱點(diǎn),越來(lái)越多的人選擇電動(dòng)汽車,不僅因?yàn)槠溆密嚦杀镜停译妱?dòng)汽車在使用過(guò)程中不會(huì)產(chǎn)生廢氣,和傳統(tǒng)汽車相比不存在大氣污染的問(wèn)題。然而電動(dòng)汽車安全事故的頻發(fā),讓人不得不重新審視電動(dòng)汽車的安全性。電池?zé)崾Э厥瞧鸹鹗鹿实闹饕颉O裉厮估?、三星手機(jī)等起火事件都涉及到了鋰離子電池的熱失控問(wèn)題。鋰離子電池的工作溫度范圍很窄,在15~45℃之間,如果溫度超過(guò)臨界水平,便會(huì)發(fā)生熱失控。鋰離子電池一旦發(fā)生熱失控,會(huì)引發(fā)停不下來(lái)的連鎖反應(yīng),溫度在幾毫秒內(nèi)迅速上升,內(nèi)部產(chǎn)熱遠(yuǎn)高于散熱速率,電池內(nèi)部積攢大量熱量,使電池變成氣體,導(dǎo)致電池起火和,并且?guī)缀醪荒芤猿R?guī)方式撲滅,直接威脅到用戶安全。
隔膜[4],報(bào)道了一種可有效防止鋰電池過(guò)熱起火的新技術(shù),他們想在情況不可收拾之前關(guān)閉電池,通過(guò)在鋰電池中增加一個(gè)熱敏高分子聚合物薄膜“開關(guān)”材料,當(dāng)電池溫度過(guò)高就會(huì)迅速切斷電池內(nèi)電路,使之降溫;當(dāng)溫度降至正常,該聚合物薄膜又能恢復(fù)正常狀態(tài),讓電池重新工作。他們將具有石墨烯涂層的鎳鈉米粒子嵌入聚乙烯材料中,制備出一種輕薄又具有柔性的導(dǎo)電塑料薄,用這種聚合物膜組裝成的鋰電池,在正常的工作溫度下,電流很容易通過(guò)薄膜,電池可以正常充電和放電,但是當(dāng)電池的溫度升高到70℃時(shí),聚乙烯開始膨脹,推動(dòng)鎳納米粒子彼此分開,這樣隔膜的導(dǎo)電性在短短的1s之內(nèi)就會(huì)降低1000億倍,電池中的電荷移動(dòng)停止,從而使電池的溫度下降。而且,當(dāng)溫度低于這種聚合物70℃時(shí),該聚合物可以很容易的恢復(fù)到原來(lái)的構(gòu)型,導(dǎo)電性也恢復(fù)正常,恢復(fù)電池功能。 醋酸鋰高效化學(xué)轉(zhuǎn)化法轉(zhuǎn)化敲除組件。
醋酸鋰:負(fù)極材料的熱穩(wěn)定性與負(fù)極材料的種類、材料顆粒的大小以及負(fù)極所形成的SEI膜的穩(wěn)定性有關(guān)。如將大小顆粒按一定配比制成負(fù)極即可達(dá)到擴(kuò)大顆粒之間接觸面積,降低電極阻抗,增加電極容量,減小活性金屬鋰析出可能性的目的。SEI 膜形成的質(zhì)量直接影響鋰離子電池的充放電性能與安全性,將碳材料表面弱氧化,或經(jīng)還原、摻雜、表面改性的碳材料以及使用球形或纖維狀的碳材料有助于SEI膜質(zhì)量的提高。解決碳負(fù)極材料安全性的方法主要有降低負(fù)極材料的比表面積、提高SEI膜的熱穩(wěn)定性。碳酸鋰:高分子固體電解質(zhì)LiNO_3-LiOOCCH_3/聚丙烯酸鋰的合成與性能研究。山東進(jìn)口無(wú)水醋酸鋰
醋酸鋰可以高溫消毒嘛?立體化無(wú)水醋酸鋰分解
鋰金屬具有高理論比容量、低電勢(shì)和低密度,被認(rèn)為是下一代電池負(fù)極材料的候選材料之一。然而,金屬鋰極高的化學(xué)活性會(huì)導(dǎo)致電解液在負(fù)極表面發(fā)生副反應(yīng),生成離子導(dǎo)通、電子絕緣的固態(tài)電解質(zhì)界面膜(SEI)。一般的SEI膜以各種有機(jī)成分(ROCO2Li)為主,循環(huán)過(guò)程中會(huì)不斷分解和再生成,從而影響鋰負(fù)極的庫(kù)倫效率和能量密度。同時(shí)SEI膜中有機(jī)成分不利于鋰離子的快速均勻傳輸,會(huì)造成鋰離子不均勻沉積形成枝晶。SEI膜的成分、結(jié)構(gòu)和電解液的組成相關(guān)。在電解液中,鋰離子會(huì)以溶劑化殼層(鋰離子與周圍的溶劑分子和少量陰離子)的形式自由運(yùn)動(dòng)。到達(dá)鋰負(fù)極表面時(shí),鋰離子溶劑化層中的溶劑分子或陰離子會(huì)與鋰發(fā)生還原反應(yīng)生成SEI膜。溶劑分子主要分解產(chǎn)物是有機(jī)成分(ROCO2Li),陰離子會(huì)生成無(wú)機(jī)成分(Li2O,LiF,Li3N等)。一般認(rèn)為SEI膜中,無(wú)機(jī)成分可提供更多的晶界通道,有利于加快鋰離子的傳輸。一般使用陰離子(如NO3-和FSI-)來(lái)調(diào)控鋰離子溶劑化層,并以此提高SEI膜穩(wěn)定性。因此,尋找需要進(jìn)一步探索新型陰離子的鋰鹽并實(shí)現(xiàn)在鋰負(fù)極表面構(gòu)建穩(wěn)定SEI膜。 立體化無(wú)水醋酸鋰分解